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Abstract
This paper presents an analysis in terms of performance characteristics of the distributed SystemC
synchronization library in its revision 1.1.0. There are discussed simulation runs on different machines
with various interconnects. Two kinds of applications are considered in more detail. The first one is
a synthetic model and the second one is a practical dual–processor model based on the OpenRISC
design.

1 Introduction

The basic operability of a library for distributed sim-
ulation of RTL–based SystemC models has been al-
ready demonstrated in [1] and [2]. Apart from the
general purpose of the use of such library there is one
important question: What does the synchronization
library cost in terms of simulation run time. Or in
other words: How can the synchronization library
help towards reduction of simulation run time?

Of course, for the majority of cases the second in-
terrogation will be the important one. But there are
also cases where simulation speed is not the primary
concern and the feature of having a distributed sim-
ulation model as such is more important.

In order to get a rough idea about the impact of the
synchronization library on simulation run time, there
are some exemplary simulation models needed which
can be analyzed in terms of runtime behavior.

This paper discusses two kinds of exemplary appli-
cations or benchmarks. The first makes use of a
rather simple and well understood synthetic model.
Though, synthetic models do usually not resemble
practical simulation models. But as they have a
well–defined behavior they are a very nice tool for
an objective analysis of various characteristics.

Apart from some formal characteristics it is also im-
portant to get a feeling about the behavior of a prac-
tical simulation model. So the second model dis-
cussed herein is a dual–processor system, which is of
immediate practical use.

At the beginning of the paper, the setup of the test
bed is shortly described. This does also include a
brief overview about the communication latencies for
various network connections which are used for later
testing. The next and major part of the paper dis-
cusses the synthetic benchmark and its results. In
section 4 the mentioned dual–processor simulation
model becomes shortly introduced and its speedup
results are presented and discussed. The paper con-

cludes with some closing remarks.

2 Test Bed Setup

The following subsections describe various general
aspects about the test bed that has been used for
practical experiments.

2.1 Time Measurement Method

All times were measured by making use of
gettimeofday(). This is not the most precise
method, but the precision proved to be sufficient for
this application.

The better way would be the use of the time stamp
counter via the RDTSC instruction. However, the
problem is that the use of the time stamp counter
is dangerous in multiprocessor environments. This
is because there is no guarantee that at a certain
time the counters of all processors share the same
value.

Practical tests have shown that the difference be-
tween the gettimeofday() and RDTSC are marginal
for the investigations discussed herein.

In order to rule out accidental mismeasurements
caused by unexpected events on the testing machines
or whatsoever, every test run has been done a couple
of times (5–10, typically). From these runs, the one
with the smallest total simulation run time has been
used.

2.2 Test Machine Configurations

Three types of test machines have been used for gath-
ering practical measurements:

kermit/earnie (by courtesy of foobar GmbH):

• 2 × AMD Athlon MP 2600+ (2.13GHz clock)
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• 256kB Cache per CPU

• AMD–760MP Chipset

• 512MB RAM

• Available TCP/IP Interconnects:
Loopback Device (LO)
Fast Ethernet (FE)
Gigabit Ethernet (GE)
Dolphin Sockets (SCI)

• gcc-3.2.3

• SystemC-2.1beta11

jack9/jack10 (by courtesy of TU Chemnitz):

• 2 × Intel P4 Xeon 2.4GHz (HT enabled)

• 512kB Cache per CPU

• E7500 Chipset

• 2GB RAM

• Available TCP/IP Interconnects:
Loopback Device (LO)
Fast Ethernet (FE)
Gigabit Ethernet (GE)

• gcc-3.3.3

• SystemC-2.1beta11

nocona1/nocona2 (by courtesy of TU Chemnitz):

• 2 × Intel P4 EMT64 Xeon 3.4GHz (HT enabled)

• 1024kB Cache per CPU

• E7520 Chipset

• 512MB RAM

• Available TCP/IP Interconnects:
Loopback Device (LO)
Fast Ethernet (FE)
InfiniBand Sockets (IB)

• gcc-3.3.3

• SystemC-2.1beta11

• Note: No 64Bit application code has been used
for these machines.

If not stated otherwise, the parameters of the syn-
chronization library were not changed (i.e. the de-
fault settings were used).

Whenever there are different results combined, it is
assumed that all involved machine types are iden-
tical. That is, when the reference model has been
benchmarked on a machine of type X, the corre-
sponding distributed model has been benchmarked
on two machines of type X. Alternatively, the corre-
sponding distributed model has been benchmarked
on the same machine of type X using the loopback
TCP/IP connection. This ensures that the symme-
try is always kept and there is made no comparison
between apples and pies.

2.3 Connection Speed

When it’s coming to communication between pro-
cesses, the performance of the connection is impor-
tant.

In order to see how the different communication sub-
systems perform for the communication pattern that
is driven by the synchronization library, there has
been developed a special benchmark. This bench-
mark is basically a send/receive benchmark and com-
municates just as the synchronization library does.
That is, it is sending and receiving data in a non–
blocking manner. If needed and/or necessary, send-
ing and receiving data can be carried out interleaved.
The latencies that are achieved with this bench-
mark are higher than what a simple ping–pong would
achieve, but they are more close to reality.

Figure 1 shows a summary of the communication la-
tencies for all involved machines and associated com-
munication media. The maximal block size is 8kB,
what is more than enough for the simulations con-
sidered in this paper. Notice that the latency axis
has a logarithmic scale and starts at 6µs!

The measurements where obtained by communicat-
ing a number of packets while taking the time for
all packets and dividing it by the number of packets.
Each run was made multiple times and the smallest
per–packet time has been chosen.
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Fig. 1: Latencies for various Connections

The graphs sometimes show an interesting behavior.
However, discussing them is outside the scope of this
paper. These graphs are just shown as reference in
order to demonstrate the quantitative differences of
the different communication media.
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3 Synthetic Benchmark

3.1 Basic Reference Model

Figure 2 shows the basic simulation model that is
used for performance evaluation.

clk

N

N
(Instance 1) (Instance 2)

Load
Module
Load

Module

Simulation Kernel

Fig. 2: Basic Model

There are two instances of a so–called load module.
These modules contain a single SC_METHOD process
that is triggered with each rising clock edge.

Both modules are connected by a customizable num-
ber of signals. These signals are of intrinsic type
bool. Notice that these are individual SystemC sig-
nals and are not enclosed within a single bit vector!
The only thing the modules are doing with the sig-
nals is to assign each output port the inverted value
of the according input port (one by one for each
port). Initially, all signals are set to zero by the
main function.

So from a functional point of view, a load module
represents a simple register with variable width and
inverted output. The reason for the inverted output
port assignment rather than a non–inverted assign-
ment is to have the signals changed and not kept at
fixed values.

Apart from the register–functionality, the load mod-
ule contains a customizable busy–waiting loop (in
fact, a simple for–loop). This loop resembles the ac-
tual load of the module. I.e. it fakes some real work
that is not directly associated with SystemC interac-
tions. In the following text, the load parameter, or
in short load or L refers to the number of loops.

3.2 Distributed Model

The distributed model does not differ very much
from the basic reference model that has been just
discussed. Of course, from a functional point of view
the distributed model is exactly the same as the ref-
erence model. Figure 3 shows the structure of the
distributed model.

Both load modules are located in separate simula-
tion kernels. The signals of both simulation kernels
are appropriately tied together by making use of the
synchronization library. In and Out marks inbound
resp. outbound sync modules.

Module
Load

clk

Out

In Out

In

Load
Module

clk

N

N N

N

Simulation Kernel 1 Simulation Kernel 2

Fig. 3: Distributed Model

Notice that each simulation kernel incorporates its
own clock. Both clocks need to be identical, of
course. Actually, we could also select one simulation
kernel for clock generation and feed it to the other
kernel through the synchronization library. However,
there are two reasons why this is not done. The first
reason is symmetry. Especially for this more formal
analysis both simulation kernels should be as identi-
cal as possible (although the additional load caused
by the clock generation can very likely be neglected).
The second reason is overall simulation speed. When
the clock signal is to be synchronized as well, it has to
be synchronized at twice the clock rate. Effectively,
this doubles the number of synchronization cycles
and hurts the overall performance. So when speed is
a concern, clocks should be duplicated rather than
synchronized. Remember that the two simulation
kernels anyway need to be aware about the actual
clock rate, as they have to specify according update
cycles for outbound signals. So the hope for the elim-
ination of potential misconfigurations by making use
of clock distribution cannot be fulfilled anyway.

3.3 Denotation of Basic Time Param-
eters

Timing parameters that are subscripted by ref re-
fer exclusively to the reference model, while timing
parameters subscripted by dist refer exclusively to
the distributed model. In case neither ref nor dist
is present, this refers to a general timing parameter
or a timing parameter that has not been specialized
for either the reference or the distributed model.

There are two primary timing parameters that will
be measured directly: The total simulation run time
and the load module time.

The total simulation run time denoted trun is the
time spent inside the sc_start() call. Notice that
trun does not include the time of the elaboration
phase of the simulation kernels.

The load module time is denoted tmod1 resp. tmod2

— one for each load module, or tmod for a general
designation. This time includes the duration of the
for–loop as well as the loop that reads the input ports
and writes the negated values into the output ports.
tmod is not measured as a whole. Instead, the run
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time is measured for each individual clock cycle and
becomes accumulated for the whole simulation run.

The speed–up is simply calculated by dividing the
run time of the reference model by the runtime of
the according distributed model:

Speedup =
trunref

trundist

3.4 More formal Maths?

Well, initially it has been planned to draw more
formal dependencies from the simulation model dis-
cussed herein. One special goal was to develop a for-
mula that represents the runtime of the distributed
model as a function of N , L, the runtime of the ref-
erence model, as well as the overhead of the syn-
chronization library. However, as it turned out and
will be shown later, the parameters of reference and
distributed model cannot be easily merged together.
But this would be actually needed in order to deter-
mine the synchronization overhead.

At the time of this writing it is believed that the
synchronization overhead can only be reliably deter-
mined by implementing according timing measure-
ments directly into the synchronization library. This
has not been done yet.

3.5 Measurement Conditions

All single measurements for the individual runs have
been made by using scripts. As previously stated,
each measurement has been taken 5 to 10 times and
the smallest recorded time has been used for fur-
ther analysis. In some rare cases individual mea-
surements differed significantly from the values they
should have in view of a smooth graph. In those cases
the individual measurements have been manually re-
peated until sensible times were measured. This
was necessary, because sometimes even the multiple–
run/minimum selection as described above did not
yield usable values due to some reason. Sometimes
there appeared highly scattered measurements where
it was almost impossible to retrieve smooth results
by repeating the measurement. In those cases the
graphs were kept despite of the scattering.

All simulation runs used a clock of 10MHz (100ns
clock cycle) and a total simulation time of 100000ns.
This results in 1000 simulated clock cycles in total.
Furthermore, all given times refer to totally accumu-
lated times — i.e. not the times that accrue for a
single simulated clock cycle, but for the whole simu-
lation.

3.6 Reference Model Behavior

The simulation run time as a function of L (load) is
as expected a clean linear function in all cases. There
is no need to discuss details about that.

More interesting is the behavior of the simulation
run time as a function of N (signal pairs). Well,
formally we would expect a linear behavior as well.
But practice is looking different.

Figure 4 shows the measured dependency of the to-
tal simulation run time as well as the module run
time components as a function of N (for kermit and
jack9). The diagram is cropped at the y–axis in order
to keep the focus on the important aspects.
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Fig. 4: kermit and jack9: Run Time depending on
Signal Pairs (no Load)

There are two primary odds visible.

The first one is a major discontinuity at around N =
200 for kermit. This could be caused by caching
effects as the amount of data SystemC has to deal
with increases with increasing signal counts. On the
other hand, 200 signal pairs (meaning 400 signals in
total) are not that much. In case of jack9 the break
appears at larger N . This might be due to the larger
cache of the Xeons.

The second odd is the significant discrepancy be-
tween the time spent in the two load modules. This
is especially extreme for kermit. Beginning at around
N = 300 the gap between both modules is increas-
ing. At around N = 600 module 1 needs almost twice
as much time as module 2. With larger N , the gap
is slowly closing again. This seems to be caused by
some caching effect as well. An additional test has
unveiled that this module that becomes instantiated
first (normally module 1) needs more time than the
other one. When signal info structures are brought
into the cache by processing the first module, they
are quickly available for the processing of the sec-
ond module. The fact that the gap between both
modules closes for large signal numbers is consistent
with the caching–theory. This is because the larger
N becomes, the higher is the probability that data
brought into the cache during module 1 processing
becomes overwritten by module 1 itself (and hence
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resides not anymore in the cache).

Figure 5 shows the behavior on nocona1
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Fig. 5: nocona1: Run Time depending on Signal
Pairs (no Load)

In comparison with kermit and jack9 we can see that
the point where the runtime is increasing faster is
shifted even more upwards. But in general, there is
not such a hard break at all. This can be attributed
to the significantly larger cache of nocona1 (twice
as much as for jack9 and four times the size as for
kermit). The difference between the two modules is
visible, but is by far not that extreme as for kermit.

Figure 6 shows a summary of the total simulation run
time of all tested machines on logarithmic scales.
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Fig. 6: Summarized trun for Reference Model (no
Load)

It is interesting to see that the run time for the Xeons
(jack9, nocona1) is significantly larger than this for
the Athlon (kermit) for smaller N . This reverses for
larger N .

The (by specification) fastest machine — nocona1 —
clearly shows its muscles for large N . However, it is
the slowest machine for small N .

All these facts substantiate the suspicion that the
strange effects are indeed caused by the caches. The
Athlon (kermit) seems to have a faster (first level?)
cache than the Xeons.

Sidenote: Just for the sake of interest, the mem-

ory consumption of the reference model has been ob-
served for different N (up to 50000). The behavior
is somewhat strange, and sometimes the the memory
consumption decreases with increasing N . Overall,
the memory consumption per signal is in the range
of 1–6kB. The author is not very firm with the inter-
nals of the SystemC reference implementation, but
this appears to be quite a lot. Perhaps it is just
C++ as it lives...

3.7 Comparison of Reference and Dis-
tributed Model

3.7.1 Speedup Depending on Signal Pairs

In order to get an idea about absolute worst–case
scenarios for the speed-up (or slow–down), we can
have a look at the speedup as a function of N while
L = 0. This is a worst–case scenario, because with
L = 0 we have no additional computation time apart
from the signal inversion.

Figure 7 shows the behavior for runs on various SMP
machines using the loopback TCP/IP connection.
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Fig. 7: Speedup for SMP runs (L = 0)

The results are quite interesting, indeed. We can
see that the speedup is increasing with increasing N .
At N = 1000 the speedup has almost reached its
maximal value. Obviously, the savings due to the
parallel execution of both load modules increase at a
higher rate as the synchronization overhead does. An
observation of the behavior for N > 1000 (graphs not
presented) has shown that the speedup is decreasing
very very slowly again.

Very interesting is the local minimum visible in the
graphs. This minimum appears to match exactly
with the number of signals were we see a change in
the runtime behavior of the reference model (N =
200). Nocona1 is an exception as it does not show a
local minimum. Nethertheless, there is a similar S–
feature visible in that area. The graphs are a little bit
scattered for larger N , especially in case of nocona1.
It is not clear where this does come from.

Figure 8 shows the speedup development on jack9
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and jack10 using Fast Ethernet (FE) and Gigabit
Ethernet (GE). The loopback–curve (LO) for jack9
is shown again as reference.
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Fig. 8: Speedup on jack9/jack10 (L = 0)

It is a little bit surprising that for larger N the slow
Fast Ethernet connection (FE) yields a better per-
formance than the fast loopback connection. The
Gigabit Ethernet connection (GE) is even more im-
pressive when compared to the loopback connection.
Even for smaller N the performances almost match
each other before the Gigabit Ethernet connection
starts gaining a significant advantage at around N =
350.

Obviously, the processors of the SMP system disturb
each other too much when accessing main memory.
This is yet another sign that SystemC appears to be
quite cache–hungry even for moderate signal counts.

A look at the development of the average load mod-
ule times ( tmod1+tmod2

2 ) gives a clear evidence for this
theory. Figure 9 clearly shows how the computa-
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Fig. 9: tmod (average) on jack9/jack10 (L = 0)

tion times decrease when separate machines are in-
volved. Notice that the times for the reference graph
are slightly smaller than the graphs where two ma-
chines were involved. This is because of the caching
effect that we have already seen in figure 4.

Ok, let’s have a look at the behavior on other ma-
chine types. Figure 10 shows the curves for ker-
mit and earnie for different networks. The loopback

curve (LO) is again shown for reference.
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Fig. 10: Speedup on kermit/earnie (L = 0)

Basically, the behavior is much as we have seen it
for jack9/jack10 (figure 8). Nevertheless, it is worth
for some more words. The point is that the Dolphin
Sockets (SCI) connection has a significantly lower
latency than the Gigabit Ethernet connection (two
to four times — depending on packet size) and is
even faster than the loopback TCP/IP connection
for smaller packet sizes. However, as it can be seen,
the difference between Gigabit Ethernet and Dolphin
Sockets is marginal. Only in the area from 100 to 200
signal pairs there is a significant advantage of the
Dolphin Socket connection. This is a little bit dis-
appointing. Intuitively it is clear that the speedup
is better for interconnects with lower latencies. This
becomes visible when comparing the curves for Gi-
gabit Ethernet and Fast Ethernet.

One plausible explanation is that there exists some
additional significant timing component that is in-
dependent from the raw communication latencies.
So far it has been believed that the synchronization
overhead is dominated by the communication times.
These issues need to be analyzed in more detail later.

Finally, figure 11 shows the curves for nocona1 and
nocona2.
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Fig. 11: Speedup on nocona1/nocona2 (L = 0)

It is not clear why the graphs become suddenly some-
what irregular for N > 500. This problem is already
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visible in case of the reference model (see figure 5).
The SMP–run using the loopback connection stays
the most performing choice for quite a long time.
This can be attributed to the larger caches.

3.7.2 Speedup Depending on Load and Sig-
nal Pairs

The following pictures show the speedup that has
been measured for different L and N as well as for
different machine/network configurations.
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Fig. 12: Speedup on jack9/jack10
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Fig. 13: Speedup on nocona1/nocona2
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Fig. 14: Speedup on kermit/earnie

In general, the speedup development depending on

load behaves as expected. That is, the larger the
load, the higher the speedup. This is because the
overhead caused by the synchronization library be-
comes less significant when the computation time in-
creases. We can also see that the speedup is clearly
exceeding the crucial value of 1.

The behavior of the speedup depending on the num-
ber of signal pairs is as expected. In section 3.7.1 we
have already seen that the speedup increases when
N increases. In addition, the larger N , the more load
is needed in order to increase the speedup.

The curves for jack9/jack10 are somewhat strange.
Notice that for large L the speedup is sometimes
greater than 2 which means we see a real hyper–
speedup here. In fact, a hyper–speedup is not that
unrealistic — but not for this kind of model. The
point is that the for–loop used for faking the load
fits easily into the cache. That is, distributing the
loops across two processors does maximally achieve
a speedup of 2. Things would be different, when the
load includes operations on signals that are local to
each load module.

Back to the graphs for jack9/jack10. Especially sus-
picious is the detailed behavior of the shown graphs
as they are a little bit scattered. A more careful anal-
ysis shows two trends for these graphs: One that is
approaching 2 as an upper limit, and one that is ex-
ceeding 2. This behavior is introduced by trunref

,
while trundist

shows an almost perfect curve (graphs
not shown). So apart form the hyper–speedup the-
ory, it is more likely that the speedup values > 2
are simply caused by too bad runs of the reference
model. This strange behavior of the reference model
seems to be unique to these Xeon–Systems and be-
comes visible when the total simulation run times
increase. An increase of the number of tests for each
configuration did not help here. Perhaps this effect is
caused by the HyperThreading. On the other hand,
the noconas which feature HyperThreading as well
do not show such an effect.

Overall, the results for all three test configura-
tions are very comparable. That is, for N = 10
the speedup surpasses the 1–mark for around L =
100000 and for N = 1000 this point is at around
L = 1000000. The impact of different communica-
tion media is nicely visible as well and is consistent
with what we have seen in section 3.7.1. Notice that
the Gigabit Ethernet curve (GE) for kermit/earnie
and N = 1000 (figure 14) is almost exactly overlaid
by the Dolphin Sockets curve (SCI).

3.7.3 Influence of the Send Buffer Size

In order to optimize communication operations, the
synchronization library contains buffers intended for
collecting signal change notifications. This makes it
possible that a bunch of notifications can be sent
within a single transaction. Every outbound sync
module has such a send buffer whose size is config-
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urable by the application (the default size is 4096
bytes). The size of the according receive buffer in
the inbound sync module becomes automatically ad-
justed depending on the remote send buffer size.

To interpret the runtime behavior as it depends on
the buffer size, it is important to know how much
data is to be transferred at all for a single synchro-
nization cycle. All the signals the model is deal-
ing with are of type bool, which is represented by a
single byte (sizeof(bool) = 1). Signal designators
are of type unsigned int, or 32 bits wide. Hence,
every signal notification occupies 5 bytes.

Figure 15 shows the speedup depending on the buffer
size as it has been measured for nocona1 and nocona2
(the load L is zero for all measurements).
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Fig. 15: noconas: Speedup depending on Send Buffer
Size (L = 0)

All graphs show a bad behavior for very small buffer
sizes. This is trivial because the communication
overhead is very high due to lots of small packets
that are to be transferred.

As shortly described in [3], large buffer sizes can be
contra–productive under certain circumstances. The
measurements shown above prove and quantify this
theory.

Clearly visible, for the Fast Ethernet connection the
default buffer size of 4096 bytes is not the best selec-
tion. For N = 1000 the optimal buffer size is between
500 and 1000 bytes. For smaller N the optimal buffer
size shifts slightly downwards.

The performance does not change anymore when
the buffer size becomes increased beyond the total
amount of data that is to be transferred per synchro-
nization cycle. Extra buffer space won’t be touched
at all. For N = 1000 it is 5000 bytes, for N = 500 it
is 2500 bytes, and for N = 100 500 bytes. The graphs
prove this, basically (slight deviations are caused by

typical dispersion of real–world measurements). It
can also be seen that by selecting an optimal buffer
size the achievable net gain decreases with decreas-
ing N . For instance, for N = 10 (graph not shown)
there is no visible gain at all. This is because there
is just too less data to be transferred. In this case,
spreading the data across multiple packets does only
hurt the performance because of the significant com-
munication overhead.

The loopback (LO) connection (only shown for N =
1000), does show up almost no special features. But
a closer inspection (not good visible in figure 15)
shows basically the same effects, but at a smaller
magnitude. The InfiniBand (IB) graph that is shown
for N = 1000 also has an interesting behavior. But
the changes in performance are not that large as it
is the case for the Fast Ethernet connection.

Figure 16 shows the impact of the buffer size for jack9
and jack10. Here it is especially interesting that for
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Fig. 16: jack9/10: Speedup depending on Send
Buffer Size (L = 0)

N = 1000 the best performance with Gigabit Ether-
net (buffer size of around 3000 – 4000 bytes) is just
slightly higher than for the cheaper Fast Ethernet
for a buffer size of around 1000 bytes. For smaller N
the gap between Gigabit and Fast Ethernet slightly
opens as it can be seen in the figure for N = 500.
Here the lower latency of the Gigabit Ethernet pays
out and cannot be compensated for Fast Ethernet
by overlapping the communication. Notice that the
graph for N = 500 and Gigabit Ethernet is showing
an unsteady behavior even for buffer sizes > 2500
bytes, although it should be mostly constant from
there. These disturbances cannot be a cause of the
buffer size at all, actually.

Figure 16 does not show curves for loopback commu-
nication as there is nothing interesting visible (just
like in case of nocona1, figure 15).

In case of kermit and earnie the behavior is not much
different as we have seen it for the other machines.
Some graphs for the Fast Ethernet connection have
been shown nevertheless (figure 17) because of the
interesting incursions in the area of 2000 and 3000—
3600 bytes for N = 1000. Those drops in perfor-

26th February 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org


Benchmarking the Distributed SystemCTM Synchronization Library Rev. 1.1.0 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1000  2000  3000  4000  5000  6000

Sp
ee

du
p

Send Buffer Size [Bytes]

N=1000, kermit/earnie (FE)
N=100, kermit/earnie (FE)

Fig. 17: kermit/earnie: Speedup depending on Send
Buffer Size (L = 0)

mance were somehow symptomatic. Probably these
critical buffer sizes cause some strange interferences
leading into significant loss of performance.

Performance Gain Explanation

Why exactly do we see an improvement of perfor-
mance for smaller buffer sizes? Both simulation ker-
nels are perfectly symmetric. That is, for each clock
cycle both kernels equally process the load modules
and enter the synchronization library at almost the
same time.

First let’s assume that the transmission buffer is
large enough to take up all data for the current syn-
chronization cycle. It will take some time until all
data has been placed into the buffer. This time is also
formally equal for both kernels. Then, the buffer will
be sent across the network. Depending on the net-
work technology, this takes more or less time. During
transmission, the kernels do nothing because the syn-
chronization library cannot proceed until there has
been received some data. The higher the commu-
nication latencies, the longer is spent without doing
anything worthwhile.

When the buffer sizes are decreased so that they can-
not take up all data for a single synchronization cy-
cle, the communication can be done in background
and in parallel with the actual signal processing by
the synchronization library.

Clearly, the positive effect of overlapped processing
becomes less effective for lower–latency networks.

The exact dependency for the optimal buffer size is
a function of N , the CPU performance, and the net-
work characteristics. The latter one mostly includes
the latency. So far, there have been made no at-
tempts to formalize this dependency.

3.8 Conclusions for the Synthetic
Model

We have seen that the synchronization library can
significantly speedup the simulation of a SystemC

model.

Overall, the selected model represents a worst–case
scenario in various aspects. Therefore the results can
be considered as worst–case results accordingly. This
does also apply to the results discussed in section
3.7.2 (speedup depending on load). Remember that
the load consists of a simple for–loop that is very
cache–friendly. So the load modules do not access
any memory location, except for the signal inversion.
The load of practical simulation models will involve
more or less heavy operation on other signals. There,
a distribution of the model will pay out much bet-
ter. Therefore the synthetic model should be perhaps
changed for future analysis so that a number of lo-
cal signals are changed instead of doing just a simple
busy–waiting delay.

But one can also imagine to consider generally dif-
ferent models, especially such ones including more
than two modules and various different connection
topologies. Some that are coming in mind first are

• Several modules connected in a ringed–fashion.

• Several fully connected modules.

• Several modules connected in a star–fashion (one
central module where the others are connected
to).

So there is plenty of stuff left to be done for the future
in this area.

4 Benchmarking a Real Model

As we have seen for the synthetic benchmark, the
synchronization library is capable of delivering a sig-
nificant speedup. Though, one can hardly imagine
what these results mean for the situation in case of
practical simulation models.

So in order to get an idea about the relations for sim-
ulation models of practical use, an exemplary simu-
lation model is needed first.

It has been decided to use the OpenRISC processor
[4] as basic element (OpenRISC 1200 or OR1200 in
particular). This processor model cannot be consid-
ered to be very huge. However, with around 40 mod-
ules and more than 10000 lines of code it cannot be
considered to be very small as well. The OR1200 is
freely available in form of synthesizable Verilog code.
This is a problem, as a SystemC model is needed. So
the whole Verilog code as been (manually) ported 1:1
into SystemC, which was a quite annoying task...

An alternative for the Verilog→SystemC conversion
would be the use of “Verilator” [5]. However, this
has not been done because the use of Verilator ap-
peared a little bit complicated for the first view,
and more importantly, because the SystemC model
should be a synthesizable one. Synthesizable (i.e.
RTL) models are more close to reality and simu-
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lation run times are a much larger problem there
as it is the case for more behavioral models. Ac-
cording documentation, Verilator generates special
code for intra–module communication without using
SystemC mechanisms. While it is claimed that this
speeds up the simulation significantly (which is cer-
tainly true), the SystemC model is not synthesizable.
In the end, Verilator’s primary purpose is just a fast
simulation of Verilog models. Of course, in general
the “verilated” Verilog code should be suitable as
well for a distributed SystemC simulation.

As the Verilog code has been really ported 1:1, the re-
sult can be considered as almost synthesizable. Only
“almost”, because some parts, especially RAMs, are
not synthesizable. There have been also made some
small C++–technical changes of the description in
contrast to commonly published templates for syn-
thesizable code. In particular, the module construc-
tor code has been moved from the header file into
the implementation file. Wilson Snyder (the pri-
mary author of Verilator) has also criticized in [6] the
commonly propagated bad practice of placing mod-
ule constructor code into the header files. Besides
the problem that Wilson mentioned, this causes large
compile times for upper hierarchy level modules be-
cause the compiler needs to work through the code of
all included header files every time. Anyways, it has
not been checked whether common synthesis tools
can deal with such a code layout (the author does
not have access to such tools).

The OR1200 is highly customizable. The used model
has been configured as following (major things):

• no DMMU, no IMMU

• 1way/512 bytes code cache

• 1way/4kB data cache

• 32 registers

• no debug–unit

• no PIC

• Tick–Timer implemented

One possible option for demonstrating the simulation
of a larger model would be to split a single processor
into several parts and distribute these. However, it
has been decided to construct a simple two-processor
system and place the single processors into separate
simulation kernels for the distributed simulation.

Figure 18 shows the reference model of the small
dual–processor system.

Every processor has got its own instruction RAM
while both are sharing a single data RAM. For the
sake of simplicity, the data RAM has been laid out as
dual–ported RAM. There is also no cache–coherency
preserved.

Figure 19 shows the according distributed model ver-
sion.

So the second CPU has been moved together with its

OR1200

(CPU 1)

OR1200

(CPU 2)

Data

(Dual−Port)
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Instruction Instruction
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resetclk
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Fig. 18: Reference Model
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Fig. 19: Distributed Model

instruction RAM into a separate simulation kernel.
Both clock and reset circuitries have been duplicated.
The reasons for the duplication have been already de-
scribed in the context of the synthetic model (section
3.2). The common data RAM remains with the first
CPU in one and the same simulation kernel. This
causes a slight imbalance, but the RAM model is
almost nothing compared to the OR1200 model.

The number of signals that are to be synchronized is
rather small. There are just 4 signals that are feed
out of simulation kernel 1 and 6 signals that are feed
in.

The CPUs itself run a small program that enables
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the caches and then fills some memory block with
some data in an endless loop.

Note: It has been observed that the simulation run
times significantly depend on the code that is being
executed by the simulated CPUs. There has been
made no in-depth analysis here, but once a test has
shown a tripled runtime when the CPUs process the
code that is used here or just NOPs. The reason for
this behavior is that SystemC is event-driven and
needs to process only those signals that have been
actually changed. Less program activity means less
signal changes and hence less simulation run time.

Also notice that the used synchronization li-
brary anyway synchronizes all signals — regardless
whether they have changed or not. For the small
amount of involved signals there would be very likely
almost no advantage when signals are only synchro-
nized when it is really needed.

4.1 Results

The simulation run times for all following measure-
ments have been obtained for 100000 simulated clock
cycles. Like in case of the previously discussed syn-
thetic benchmark, the shown times include only this
time that is spent for the actual simulation (i.e. for
sc_start()). That is, initialization and synchro-
nization library connection setup is not included.
However, practice has shown that this extra over-
head just takes a fraction of a second here.

Every simulation run has been carried out a couple
of times and the smallest measured time has been
used for further analysis.

Figures 20 to 22 illustrate the results for various ma-
chines and various communication networks.

Speedup:
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(Reference)
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jack9/jack9
(LO)

0.83 0.93 1.03

Fig. 20: Results for jack9/jack10
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Fig. 21: Results for nocona1/nocona2

These results are not an exact mirror of the behavior
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16.26s

Fig. 22: Results for kermit/earnie

of the synthetic model. The SMP–runs on jack9 and
nocona1 are slightly slower than the according refer-
ence run. Interestingly, the run on kermit shows with
1.23 a quite significant speedup. This is especially in-
teresting, because the Athlons are those processors
with the smallest cache.

The total simulation times for the Fast and Giga-
bit Ethernet connections are comparable between
jack9/jack10 and kermit/earnie. The Dolphin Sock-
ets connection (SCI) shows with 1.35 the best
speedup of all tests. There is also a quite big ad-
vantage over the Gigabit Ethernet connection. This
is a little bit surprising, as the synthetic benchmark
showed almost no difference between both intercon-
nects.

In case of nocona1/nocona2 there is no valuable
speedup at all. As the noconas are the fastest ma-
chines, the speedup results are generally worser than
those for the other machines with comparable inter-
connects. This is natural, as the synchronization
overhead is more significant here. Or expressed in
other words: The simulated model is just too small.

5 Discovered Problems

Despite the aspect of performance analysis, the tests
that have been made were also a good stress test for
the synchronization library. Basically, almost every-
thing went smooth as expected. In case of the simu-
lation of the dual–CPU model not a single ambiguity
has been logged.

However, the synthetic benchmark unveiled a bug of
the synchronization library rev. 1.1.0. Though, it
occurred only under extreme and mostly unrealistic
conditions.

The problem is that the distributed simulation
freezes under certain conditions and the processes
do not consume any CPU time anymore. The con-
dition depends on the machine type, the communi-
cation network, the buffer size, and the number of
signal pairs (N). For instance, the problem occurred
on jack9/jack10 and Fast Ethernet with N = 19000
and the standard buffer size of 4096 bytes. For faster
connections (i.e. Gigabit Ethernet or loopback de-
vice) the problem occurred for N = 21000 resp.
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N = 36000. In case of kermit/earnie the problem
has been already logged for N = 100 when using
the Dolphin Sockets, but with an unrealisticly small
buffer size of 20 bytes. In case of nocona1/nocona2
the problem did not occur at all.

Finally, the problem could be pinned down quickly
and it occurs due to a slight mishandling of non-
blocking send/receive operations. The bug has been
fixed and an updated synchronization library will be
made publically available soon.

6 Closing Remarks and Con-
clusions

What are the lessons learned?

First of all and most importantly we have seen that
the distributed simulation can yield an effective gain
in performance. Of course, there was basically no
doubt about it, but this paper has given a more
quantitative insight into the question. This is espe-
cially true for the discussed dual–processor model.
There we have seen that its complexity is almost
high enough for achieving a break–even or a mod-
erate speedup — depending on the simulation hosts
and networks.

The general procedure for distributing a certain
model should be a partitioning of the design into
as equal as possible parts that are connected by as
less as possible signals. When the number of sig-
nals that are to be synchronized is rather large (hun-
dreads to thousands) and the simulation hosts are
rather fast compared to the network connection, it
might be worth to play with the buffer size. As we
have seen in section 3.7.3, the achievable gain can be
quite significant.

One aspect in the road map of synchronization li-
brary enhancements is the support for SystemV
shared memory as communication medium. This is
important, as it cuts down the communication la-
tencies significantly. However, almost all measure-
ments basically show that the use of SMP systems
does not unveil the best results. The processors
just hinder each other too much. The only excep-
tion are the Athlons, where at least the SMP–run of
the distributed processor model has shown a rather
good result. Of course, we have to admit that the
SMPs used here are merely low–cost bus–based mod-
els. That is, they do not feature multiple memory–
banks and an associated crossbar. In this context it
would be interesting to see the behavior on multi–
processor AMD Opteron systems. As these proces-
sors feature a built–in memory controller, they have
a per–processor RAM and different processors do not
hinder each other at all while accessing private mem-
ory. Unfortunately, there were no Opteron systems
accessible for testing at the time this paper has been
written.

When somebody is concerned with acquiring new
hardware equippment for his distributed SystemC
simulation tasks, the following rules of thumb can
be given so far:

• Of course, the actual machines should be as fast
as possible and should incorporate caches as large
as possible.

• As for the question whether to go with SMP
machines or not, the tendency is more in direc-
tion of single processor machines. As described
above, the provisions against the SMPs count
mostly for those rather simple bus–based systems.
Nethertheless, dual processor systems might be
useful — but not with the intention of running
two simulation kernels on one system. The rea-
son is rather to have one CPU exclusively avail-
able for one simulation kernel while the other one
can deal with other concurrent tasks. Though, as
we have seen in case of the Athlons and the CPU
model, there can be achieved a speedup as well
(figure 22).

• When there are many (thousands) signals to be
synchronized, not too much emphasis should be
put on fast and expensive networks. Standard
networking technology in junction with well (ex-
perimentally) selected buffer sizes can do the job
evenly good.

• Ultra–fast (and expensive) networking technolo-
gies become interesting when there are only
tens to hundreads of signals to be synchronized.
Notice that “ultra–fast” means low latencies
rather than high bandwidths!
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