
Digital Force Public Documentation

Date: 12th December 2005
(Last Build: December 13, 2005)

User Manual
for Distributed SystemCTM Synchronization Library

Rev. 1.1.1

Mario Trams

Mario.Trams@digital-force.net

F O R C E
D i g i t a l

Digital Force / Mario Trams

http://www.digital-force.net

http://www.systemc.org
mailto:Mario.Trams@digital-force.net
http://www.digital-force.net

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 1

Contents

1 Preface 5

1.1 Why does this Library exist? . 5

1.2 Why is this Library made publicly available? . 6

1.3 What will be the Future of the Library? . 6

1.4 This Release 1.1.1 . 6

2 Legal Matters 7

2.1 Terms of Use / License Agreement . 7

2.2 NO WARRANTY . 7

2.3 The LIBRARY and the GNU Portable Thread Library . 8

3 Library Installation and Usage 9

3.1 Requirements . 9

3.2 Installation . 9

3.3 Compiler Version . 10

3.4 The GNU Portable Thread Library . 10

3.5 Application Compilation and Linking . 11

3.6 Example Compilation . 11

3.7 Other Documentation . 12

4 Things to take Care for 13

4.1 Do not exceed the maximal Simulation Time! . 13

4.2 Do not change Simulation Resolution after Connection! . 14

4.3 Be aware of Time–Rounding! . 14

4.4 Selecting the right Buffer Sizes . 14

5 Preparing the Synchronization Library for your own Signal Types 17

5.1 What is needed in Detail? . 17

5.2 The std::string Example . 19

5.3 Modification of Code for known SystemC Signal Types . 22

6 Example Application 23

6.1 Basic Model . 23

6.2 Code for Kernel 1 (Register) . 24

6.2.1 Main Code of Kernel 1 . 24

6.2.2 Code for the Register Component (Alternative I) . 24

6.2.3 Code for the Register Component (Alternative II) . 25

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

2 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

6.3 Code for Kernel 2 (Adder) . 27

6.3.1 Main Code of Kernel 2 . 27

6.3.2 Code for the Adder Component . 28

6.4 A closer Look on the Timing . 28

7 Header Files provided for the Synchronization Library 31

7.1 Header File Hierarchy . 31

7.2 Header File Descriptions . 32

7.2.1 systemc sync.h . 32

7.2.2 type identification.h . 32

7.2.3 parameter definition.h . 32

7.2.4 functor classes.h . 32

7.2.5 functorize baseclass.h . 32

7.2.6 sc dfsync in.h . 32

7.2.7 sc dfsync out.h . 32

7.2.8 sc dfsync.h . 33

7.2.9 functorize flat.h . 33

7.2.10 functorize sc u int.h . 33

7.2.11 functorize sc big u int.h . 33

7.2.12 functorize sc bit.h . 33

7.2.13 functorize sc bv.h . 33

7.2.14 functorize sc logic.h . 33

7.2.15 functorize sc lv.h . 33

7.2.16 functorize sc u fixed.h . 33

7.2.17 functorize sc u fixed fast.h . 34

7.2.18 functorize sc u fix.h . 34

7.2.19 functorize sc u fix fast.h . 34

7.2.20 functorize string.h . 34

7.2.21 serialize flat.h . 34

7.2.22 serialize char.h . 34

7.2.23 serialize int.h . 34

7.2.24 serialize sc lv.h . 35

7.2.25 serialize sc u fixed fast.h . 35

7.2.26 serialize sc u fix.h . 35

7.2.27 serialize sc u fix fast.h . 35

8 Library Function Reference 37

8.1 Library State Diagram . 37

8.2 class sc dfsync . 38

8.2.1 Constructor sc dfsync() . 38

8.2.2 Destructor ~sc dfsync() . 38

8.2.3 sc dfsync in inbound module() . 38

8.2.4 sc dfsync out outbound module() . 38

8.2.5 int set parameter() . 39

8.2.6 int connect all() . 40

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 3

8.3 Parameters for class sc dfsync . 40

8.3.1 Param Relax Delta Cycles (3) . 41

8.4 class sc dfsync in . 41

8.4.1 int attach() . 41

8.5 class sc dfsync out . 42

8.5.1 int attach() . 42

8.5.2 int set parameter() . 43

8.6 Parameters for class sc dfsync out . 43

8.6.1 Param Flow Ctrl Max Cycles (1) . 43

8.6.2 Param Send Buffer Size (2) . 44

Recommended Readings 45

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

4 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 5

Chapter 1

Preface

1.1 Why does this Library exist?

Back in 2001, the author has started a certain technological long–term project. Within that project a rather
large and interdisciplinary simulation framework is planned. This framework is intended for simulation
of a broad range of topics including physical/kinematic processes, electronics hardware, and processing
algorithms. If possible, this simulation is to be carried out in real time.

Instead of its initial purpose — primarily the description of hardware and partly software with the goal to
simulate and synthesize digital systems — the SystemC library has been found very useful for modeling even
physical processes. In addition to this fact, SystemC models are not necessarily just some kind of passive
model descriptions as it is the case with VHDL, for instance. No, basically a SystemC model is nothing
more than a “normal” C/C++ program. That is, such a model can easily make use of almost all existing
libraries and system calls one can imagine. From the author’s point of view, this fact makes the SystemC
library a massively powerful tool — perhaps even more powerful than initially thought by the inventors.

The simulator framework to be developed is going to become rather large and it has been planned from the
beginning to spread different simulation domains or parts across multiple computers. Apart from that, some
parts of the simulator might be not based on the SystemC library for some reason. In any case, there is
a mechanism required that is keeping all involved simulation processes somehow in sync and is exchanging
information about signal values among these processes.

Well, just for evaluation purposes, such a mechanism was quickly developed within days. In particular,
data was exchanged between some GTK–sliders, a simulation core based on SystemC, as well as another
process responsible for some graphical OpenGL–representation. Within that exemplary system, everything
was basically hand–made. This means the mechanism for exchanging data was part of the actual simulation
model.

Of course, this has been found not very elegant and it is getting more problematic with increased model
complexity. So there was born the idea to develop a library that can perform this synchronization more or
less alone — i.e. without interaction of the actual simulation model.

So there has been made some investigation regarding the general state of distributed simulation from a
science point of view in order to see which concepts have been developed so far. Also, there has been made
an analysis of what can be done in this direction with SystemC at all, and what is required for the actual
application. The resulting findings of this investigation have been presented in [7]. The essential conclusion
was to go a semi–transparent way where information about the change rate of signals whose values are to
be sent to other processes is specified once at the beginning of the simulation. This feature has been called
Explicit Lookahead.

Despite the fact that such a synchronization library is required for a special purpose, it is believed that a
distributed simulation of SystemC models will become very important in future as the acceptance of SystemC
as such increases. This is especially true in view of the ever increasing complexity of digital systems. In
that context, this concept for distributed simulation of SystemC models matches almost perfectly with the
functional cycle–accurate simulation of models based on Register–Transfer–Level (RTL). This is because
such models are clocked with a certain (fixed) frequency and register outputs change (if they change) at
discrete times known from the very beginning. Therefore the library has also a high potential to be used
in this area. This potential use of the library in a broader range of applications was also one reason for

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

6 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

providing it on a rather professional level.

1.2 Why is this Library made publicly available?

As described above, the library has been not just developed for the sake of itself but it is rather a byproduct
of another project. Nevertheless it has been decided to make the library available to the public in hope that
it will be found useful and can help others to solve their problems more efficiently.

Another reason is to draw more public interest onto the field of distributed SystemC simulation. With a
broader use of the library there is a higher probability for the detection of possible bugs as well as weak
points that could be improved. Apart from that, the existence of this library as the world’s first publicly
available exemplary reference implementation in its field could lead into the development of similar, much
more advanced libraries.

Because of various reasons, the library is currently not available as open source. Nevertheless it is planned
to release the library under the LGPL some day.

1.3 What will be the Future of the Library?

The library in its current version described herein fulfills all of the requirements that have been appointed in
view of the targeted application. But there are still several issues regarding both quantitative and qualitative
characteristics that are planned to be improved. Therefore the development of the library will be continued
in the future.

In this context it is important that users should be aware of the fact that software written for this version
of the library does not necessarily need to be compatible with future major revisions. The point is that this
synchronization library is considered as a research project that is entering a formerly unexplored area. That
is, it is impossible to specify and code the perfect solution within one step. Instead, with every new version
and with growing experience in practical use there appear new ideas how things could be implemented more
efficiently or which additional features would be desirable.

Though, it is believed that possible changes in application codes will be limited to the elaboration phase
of the SystemC code. That is, the actual simulation model (i.e. all the instantiated components etc.) can
be left untouched. This is because the synchronization library is explicitly targeted at the simulation of
RTL–like models. And these models follow a very specific way of description that is not necessarily unique
for this project. In particular, the library fits perfectly with the guidelines that have been specified for
SystemC RTL coding (see also [6]).

In order to be up–to–date, users should regularly check whether there is a new revision or other information
regarding the library available.

Apart from the continuing development process that will be driven by the initial author, anybody (individual,
company, ...) is invited to contribute to the synchronization library by reporting problems, bugs, or proposals
regarding library improvement.

1.4 This Release 1.1.1

This release 1.1.1 of the Distributed SystemC Synchronization Library is functionally EXACTLY the same
as the previous revision 1.1.0.

The primary reason for this release was the adoption for the most recent SystemC release 2.1.v1. Because
there were some minor changes required for some header files due to a removed (or now deprecated) data
type sc_string, this ”full” release has been published rather than a plain library archive update for revision
1.1.0.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 7

Chapter 2

Legal Matters

In the following text, the “LIBRARY” (all uppercase letters) refers to the ”Distributed SystemCTM Syn-
chronization Library Rev. 1.1.1” as it has been obtained from the author and is described herein (i.e. a
tar–archive with various files including this documentation).

As soon as you are directly using and/or distributing the LIBRARY, it is assumed that you are aware of the
topics discussed throughout this chapter and have agreed to the terms of use (section 2.1). “Directly using”
means writing code that is calling functions of the LIBRARY.

Note that there might apply different conditions for future releases of the LIBRARY.

2.1 Terms of Use / License Agreement

The LIBRARY is not open–source and is published under special conditions described herein.

The LIBRARY can be redistributed ”as is” free of charge provided that it is distributed in exactly the same
package (i.e. the original tar–archive) including the same contents as it has been initially obtained from the
author or downloaded from the author’s web site. It is not allowed to redistribute packages with any changes
applied to any files contained in the original LIBRARY.

You can embed the LIBRARY into final applications (including proprietary/commercial applications) and
distribute and/or sell those applications under your desired conditions. In this case it is up to you to apply
any changes to the LIBRARY you need. Though, it is not allowed to change or remove any copyright notice
inside the LIBRARY. In addition, you should be aware of the fact that there is given NO WARRANTY for
the LIBRARY (see also section 2.2). In case you found the LIBRARY to be stable for your application, it
is up to you to provide a warranty for your final application as a whole — AT YOUR OWN RISK.

With respect to the Pth library that is used by the LIBRARY and hence by your final application as well,
you have to take care when distributing your application in order to not violate the LGPL. Refer to LGPL
clause 6 for a description of the requirements.

2.2 NO WARRANTY

The following text does almost match the warranty clauses of the LGPL (Version 2.1, February 1999) while
reflecting the fact that the major part of the LIBRARY is not available in source code.

Official warranty clauses:

Because the LIBRARY is provided free of charge, there is NO WARRANTY for the LIBRARY,
to the extend permitted by applicable law. The LIBRARY is provided ”as is” without warranty
of any kind, either expressed or implied, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The entire risk as to the quality and
performance of the LIBRARY is with you as you are integrating the library into a final application.
Should the LIBRARY prove defective, you assume the cost of all necessary servicing.

In no event unless required by applicable law will the author be liable to you for damages,
including any general, special, incidental or consequential damages arising out of the use or

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org
http://www.systemc.org

8 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

inability to use the LIBRARY (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the LIBRARY to operate
with any other software), even if the copyright holder has been advised of the possibility of such
damages.

2.3 The LIBRARY and the GNU Portable Thread Library

The LIBRARY makes use of the GNU Portable Thread Library (Pth) that has been developed and released
by Ralf S. Engelschall under the LGPL. In particular, Pth version 2.0.0 has been used during development
of the LIBRARY.

The Pth library is not provided together with the LIBRARY and needs to be installed separately, if not
already done.

It is understood by the author that the LIBRARY falls under clause 6 of the LGPL (version 2.1). In this
context it is believed that this distribution of the LIBRARY fulfills all requirements of LGPL clause 6:

• There is given prominent notice that the Pth library is used and that the Pth library is licensed under
the LGPL.

• A copy of the license is supplied with the LIBRARY (see file LGPL.txt in the LIBRARY archive).

• When used in an application, the LIBRARY displays a copyright message dedicated to itself as well
as to the used Pth library.

• In consistency with clause 6 a) or 6 b) of the LGPL, it is possible for you to combine the LIBRARY
with any compatible version of the Pth library depending on your needs.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 9

Chapter 3

Library Installation and Usage

3.1 Requirements

The library is currently only available for 32Bit x86 architectures and is only running under Linux. The
library has been developed under Mandrake Linux 8.2 / Linux kernel 2.4.18 and Mandrake Linux 10.1 / Linux
Kernel 2.6.10. However, it is believed that the library is actually not dependent on any Linux distribution
or kernel version. Regarding compiler versions, refer to section 3.3 below.

The most important non–standard software that is required for using the library is an existing SystemC
version 2.1.v1 installation. Information on how to get and install this package can be found on the SystemC
home page at http://www.systemc.org

Another piece of third–party software required by the synchronization library is the GNU Portable Thread
Library (Pth). In section 3.4 there are collected a few information on how to obtain and install this library.

Apart from the above mentioned things you need various other standard development tools and libraries. A
properly set up Linux system should provide all that is needed.

In order to be able to distribute a simulation across multiple computers, those computers need to be reachable
by each other via TCP/IP. It is outside the scope of this documentation to describe how to setup such a
network.

3.2 Installation

The installation of the library is not very automated (i.e. via rpm) but still rather simple. All that has to
be done is to go to a desired directory where the library is to be installed and unpack the package by

tar xvjf systemc_sync-1.1.1.tar.bz2

This creates a directory systemc_sync-1.1.1 that is containing the following subdirectories:

• doc contains this manual.

• include contains the header files for the synchronization library. Refer to chapter 7 for a brief de-
scription of the files.

• lib_sc-2.1.v1_gcc-2.X contains the library compiled for SystemC 2.1.v1 with gcc-2.95.3.

• lib_sc-2.1.v1_gcc-3.X contains the library compiled for SystemC 2.1.v1 with gcc-3.4.2.

• example contains a small example (see also section 3.6).

Depending on the gcc/g++ version you are using, you need to select the right library when linking your
application. See also section 3.3.

The library directories contain a static library archive (libsystemc_sync.a). Shared libraries are not yet
pubically available.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org
http://www.systemc.org

10 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

3.3 Compiler Version

According official documentation, SystemC 2.1.v1 requires gcc version 2.95.3 or some gcc 3.X versions. It is
not really clear where this restriction does come from. Presumably, SystemC version 2.1.v1 has only been
extensively tested with these compilers.

In fact, this synchronization library revision 1.1.1 has been successfully tested with gcc versions 2.95.3 and
3.4.2.

With gcc version 3.0 there has been introduced a new name–mangling scheme for C++. This makes it
object–code incompatible with object files generated by earlier gcc versions. That is, when a gcc-2.X is used
for application compilation, the SystemC library as well as the synchronization library need to be compiled
by gcc-2.X as well. Similarly, when gcc-3.X is used, both libraries have to be compiled by gcc-3.X.

In order to deal with this situation, the synchronization library is provided for both cases. The directories
ending with gcc-2.X contain a library compiled with gcc-2.95.3 and should be suitable for all gcc-2.X versions.
The directories ending with gcc-3.X contain a library compiled with gcc-3.4.2 and should be suitable for all
gcc-3.X versions.

Note: gcc-2.X means all gcc versions with a major version 2, and gcc-3.X all gcc versions with a major
version 3. Though, it cannot be guaranteed that this does really mean all particular subversions, although
it is believed that this is the case. If you are unsure which version you are using, you can check this with
gcc --version.

Note: The synchronization library revision 1.1.0 has been released for gcc-2.96, but this revision 1.1.1 for
gcc-2.95.3. It was perhaps a mistake to use gcc-2.96 that time. In fact, the latest official gcc-2.X release
is 2.95.3. gcc-2.96 was an unofficial development release of the gcc that leaked for some reasons into some
Linux distributions.

3.4 The GNU Portable Thread Library

The synchronization library makes use of the GNU Portable Thread Library in order to implement some
tasks more clean. In particular, those threads are used during the connection of the inbound and outbound
sync modules.

Important Note: The Distributed SystemC Synchronization Library Rev. 1.1.1 has been tested exclusively
with version 2.0.3 of the Pth library. Although it is believed that the library is working as well with later
Pth versions, there might appear unexpected problems. So just give it a try...

The GNU Portable Thread Library can be obtained from http://www.gnu.org/software/pth/pth.html

Depending on your Linux distribution, there might be also precompiled packages available. However the
building and installation from the sources is rather easy and straight–forward as well. The INSTALL file
contained in the Pth source package describes all steps and parameters in detail.

Here is a short description how to build and install the Pth library on your system. We assume the Pth
library is to be installed globally on your system in /usr/local/pth. This usually requires that you are
logged in as root.

• After unpacking the Pth package enter the created directory (e.g. pth-2.0.3/).

• If you want to use another compiler than the default gcc you can set the CC environment variable. For
instance:
export CC=/usr/local/gcc-3.4.2/bin/gcc
(assumes that you are using the bash)

• Compiler flags can be also set. For instance
export CFLAGS=-O3
advises the compiler to use the -O3 optimization level.

• The Pth library is configured by
./configure --prefix=/usr/local/pth

• And then
make
make test
make install

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org
http://www.gnu.org/software/pth/pth.html

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 11

• As we usually want the Pth library to be found automatically during program execution in case of
dynamic linking, we edit the configuration file of the dynamic linking mechanism (/etc/ld.so.conf)
and add the line
/usr/local/pth/lib
After this we have to execute
ldconfig

Note that the last step (changing /etc/ld.so.conf and executing ldconfig) is only really useful for a
global, system–wide installation. In case you want (or need) to install the Pth library somewhere in your
home directory, you will have to add the according library path to your LD_LIBRARY_PATH environment
variable.

3.5 Application Compilation and Linking

The synchronization library is currently only available as static library.

During linking, the library should be always located in front of the SystemC library
(i.e. -lsystemc_sync -lpth -lsystemc). The reverse order showed up some strange linking problem
with recent gcc versions (3.X; definitively in case of 3.2.2 and 3.4.2).

In particular, the problem is an undefined reference to wait(). Interestingly, this problem appears only
when the application itself does not make use of wait().

Note: It has not been checked whether these problems are still there with SystemC 2.1.v1.

Also note that you have to link against the Pth library as well.

The Makefiles of the provided example application can be used as example for creating your own Makefiles.

3.6 Example Compilation

The example that is provided together with the library is described in more detail in chapter 6 of this
document. This section does just describe how it can be compiled and started.

The example directory contains two directories: register contains the source code for the register simulation
kernel and adder contains the sources for the adder simulation kernel.

Before compilation it is necessary to adjust the Makefiles according to your system:

• The variable SYSTEMC has to be changed so that it is pointing to your SystemC installation directory.

• The variable PTH_LIB has to be changed so that it is pointing to the directory where the Pth library
files are installed (see also section 3.4). Do not forget to include the actual library directory in the
path (i.e. the path has to end with /lib).

• The variable SYNC_LIB has to point to the directory containing the synchronization library. Depending
on the gcc version and the SystemC version you want to use it has to point to one of the four library
directories (see section 3.2).

• SYNC_INC has to point to the include directory of the library (should be already fine for the example).

• The CC–variable has to be set according your desired compiler.

• You might want to specify some other compiler options as well.

Provided that all settings have been adjusted, both simulation kernels can be build by calling make in the
corresponding directory.

Then both simulation kernels can be started with entering ./register and ./adder on two shells on the
same machine. Note that the example has been prepared to work on a single machine as the host name
specified at according places is localhost. You might also want to change this, recompile the applications,
and run them on different hosts. When you are linking the application statically, you don’t need to install
all the libraries on each system.

Note: As described in chapter 6, there are provided two alternatives for the register model — One as
SC_METHOD and another as SC_THREAD. By default, SC_METHOD is used. You can change that by changing the
symbolic link clocked_reg.h, which normally points to clocked_reg_method.h:

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

12 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

rm clocked_reg.h
ln -s clocked_reg_thread.h clocked_reg.h
make clean
make

Note: In case one of the used port numbers is already occupied by another process running on your system,
the connection fails with an according error message. In this case you have to change the used port numbers
(refer also to chapter 6).

3.7 Other Documentation

Apart from the documentation that is provided by this document, there is a white paper [8] which describes
various aspects regarding revision 1.1.0 of the synchronization library in more detail (applies also for this
newer revision 1.1.1). An older paper [7] discusses some more fundamental issues regarding the basic concept
behind the method of distributed SystemC simulation that is used by the library described herein.

It is strongly recommended to read those papers before proceeding with own practical experiments.

From time to time there might also appear additional information on the author’s according project web
site:

http://www.digital-force.net/projects/dist systemc

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org
http://www.digital-force.net/projects/dist_systemc

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 13

Chapter 4

Things to take Care for

The following sections describe some minor issues one should be aware of when using the synchronization
library. Ignoring them can cause nondeterministic behavior that is difficult to debug.

4.1 Do not exceed the maximal Simulation Time!

The synchronization library takes some precautions for avoiding problems when the maximally possible
simulation time is being exceeded. In particular, the library automatically removes all signals that would
need to be processed after the simulation time has been overflown.

However, SystemC itself does not take similar precautions. In fact, it seems to ignore the situation completely
and behaves somewhat strange. Because of the general confusion, the process scheduling seems to be confused
when a wait()–call exceeds the maximal simulation time. It is important to note that the problems do
already start when the maximal simulation time has not been exceeded but the wait() argument exceeds
the maximal simulation time when added to the current simulation time.

Therefore it should be ensured that at no time no wait() is called that overlaps a simulation time wrapping.
To illustrate this by example, when the simulation time lasts for 10 seconds, no wait() must suspend the
thread for more than 10 seconds. Although it has not been tested in detail, it is believed that the same
applies for otherwise triggered threads and methods that are waiting for some event (directly by calling
wait() without a time or indirectly such as in case of SC_METHOD).

As this is a little bit difficult to achieve, it is recommended to not exhaust the complete available total
simulation time until the last femto second. Instead, the simulation should be executed for a limited time
that inherently avoids the problematic cases. For instance, when the maximal allowable simulation time is
10000s (just a hypothetical value!) and the largest time a process can be suspended is 10s, then a simulation
up to 9990s ensures that no timing value overflows.

Notes:

• This is a general SystemC issue and is not only limited to the use of the synchronization library.

• For tracking the simulation time, SystemC makes use of an internal 64 bit counter that is counting the
simulation time in simulation resolution ticks. That is, the maximal allowable simulation time is

Resolution ∗ (264 − 1)

As an example, when the simulation resolution is set to 1ns, the maximal allowable simulation time is
18446744073709551615fs, or 18446.744073709551615s.

• As long as your specific application stays far below the according maximum (even if you start an
endless simulation that becomes terminated otherwise), you do not have to worry about this issue at
all.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

14 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

4.2 Do not change Simulation Resolution after Connection!

The function that is used for connecting the simulation kernels (connect_all(), see also section 8.2.6
on page 40) internally performs several calculations based on timing–related parameters. In particular,
this involves the simulation resolution and the default time unit. Therefore it is forbidden to change either
parameter by sc_set_time_resolution() or sc_set_default_time_unit() after connect_all() has been
called. Well, according the SystemC 2.0.1 Language Reference Manual ([2], page 416) it is not possible to
adjust both parameters after an sc_time object has been created (the synchronization library creates such
objects). While this is working well for the simulation resolution and the application terminates in case of
an error, this is not the case for the default time unit. Tests have shown that the default time unit can be
changed anywhere during the elaboration phase, and in particular also after the creation of the first sc_time
object. Therefore care should be taken here because changing the default time unit after connection causes
unpredictable results.

It is recommended to call connect_all() just before the simulation is started with sc_start().

Note: The behavior for SystemC 2.1.v1 has not been checked in detail for this issue. However, following
the recommendations stated above cannot be a mistake.

4.3 Be aware of Time–Rounding!

SystemC does round time values (i.e. objects of sc_time) according the selected simulation time resolution.
When different simulation kernels make use of different simulation resolutions and times are getting rounded,
this can lead to problems that become not directly visible. This is best explained based on a small example.

• Let’s assume we have a simulation kernel A with a resolution of 10ns and a simulation kernel B with
a resolution of 1ns.

• Our simulation model (including both A and B) assumes that a certain signal becomes updated every
8ns and is created in simulation kernel A. Hence, the signal is attached with an update cycle of 8ns to
an according outbound sync module in kernel A.

• Because 8ns cannot be represented in a resolution of 10ns, SystemC automatically rounds it. In this
case it is rounded up and the actual update cycle will be 10ns instead of 8ns.

• The update rate is reported to the remote inbound sync module in kernel B and the signal will become
updated every 10ns.

• Because the actual simulation model (especially this part of the model that is represented by kernel
B) expects the signal to change every 8ns, the whole simulation becomes corrupted — silently.

Of course, the problem is finally a direct cause of the badly designed simulation model. That is, normally
nobody would specify timing values that are below the actual simulation resolution. But the bad thing is
that such a condition is not detected by the synchronization library.

The reverse case where A has a resolution of 1ns and B has a resolution of 10ns would be discovered by
the synchronization library. However, the case described above cannot be discovered as the library already
receives wrong (rounded) time information. So it has no chance to react appropriately.

Note: There is a theoretical chance to detect such conditions. That is, when the synchronization library
does exclusively accept double/sc_time_unit pairs as update cycle parameter. However, specifying the
time in form of an sc_time object is much more convenient in most cases.

In general, it is recommended (but not needed) to set the simulation time resolution in all involved simulation
kernels to one and the same value.

4.4 Selecting the right Buffer Sizes

As described in section 8.6.2, the synchronization library allows the customization of the size of a special
buffer used for low–level communication. Every outbound sync module has such a buffer. The size of the
according buffer at the corresponding inbound sync module cannot be set but is automatically adjusted.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 15

The intention of this buffer mechanism is to combine data transfers on user–level. That is, instead of
performing an operating system call for transferring individual bytes or words, these buffers take up a
number of smaller transactions. When a buffer becomes full or becomes explicitly flushed, there is made a
single operating system call. This mechanism leads to large savings of overhead.

One might think that the larger the buffer size the better is the performance. This is a little bit short–sighted,
however.

At a first glance, large buffers do indeed reduce the overhead. But they induce also a higher latency. That
is, while a small buffer becomes transmitted in rather short cycles (because it is filled up quickly), large
buffers become transmitted more seldom. As a result, data that has been inserted into the buffer at the very
beginning cannot be processed for a comparatively long time.

As long as this data cannot be processed by the receiver anyways (because it is busy with other things), this
is not a problem. But when the receiver urgently needs this data to continue its work, it is a problem.

Because the actual impact of the buffering depends heavily on parameters such as computing power, network
characteristics, and — as an unmeasurable component — the behavior of the application itself, there cannot
be given an optimal value. The only way is to play a little bit with the buffer sizes...

Because every outbound sync module has its own adjustable buffer, and every inbound/outbound sync
module context might have a different communication characteristics, finding the optimal solution is a
complex multi–dimensional problem for complex simulation models. However, it should be not that difficult
to find some almost optimal setting with some experimenting and experience.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

16 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 17

Chapter 5

Preparing the Synchronization
Library for your own Signal Types

The library does provide functionality for handling of most user–defined types (UDTs) out–of–the box. This
is valid for all kinds of structures or classes whose state is represented flat in memory. That is, they do not
contain any pointer variable.

All signals of these types are handled by the same mechanism that is used for signal types of one of the
built–in C types (such as bool, char, int, etc.).

As soon as your type includes pointer variables you have to provide your own code for handling this type.
This includes serialization/deserialization functionality that is converting the state of such an object into a
couple of bytes and vice versa, as well as some additional type–dependent preparation.

ATTENTION: In case you do not provide this additional code, the library will fall back to the mechanism
used for the flat types. As a result, signals of your special type won’t be handled correctly. If you have
luck, this results in a segmentation fault. If you don’t have luck, you will encounter a very strange behavior
that you cannot really explain or the synchronization library appears to be broken. So you have to be very
careful!

It is theoretically possible to avoid the fall–back to the default handler. In fact, you can do this by yourself
by changing the headers appropriately. However, for the sake of convenience the default fall–back is very
useful for the regular case. That is, very likely most UDTs in the context of SystemC signals will consist
of a flat architecture such as a simple accumulation of intrinsic types. When there is no default handling
mechanism, one would need to write appropriate handlers for each of those types.

5.1 What is needed in Detail?

Let’s assume you want to let the synchronization library deal with your complex type your_type. You have
to provide a header file (say your type.h) that contains the following functionality:

• A base class for serializing objects of your_type into a character array (say serialize your type).
This can also be a template class depending on your needs. This class has to

– contain a (non–static) variable of a const pointer to an sc_signal of your_type (const because
we are not going to change the signal behind).

– provide a constructor with a const pointer argument pointing to an sc_signal of your_type.
This constructor does at least store the pointer in the above mentioned variable.

– provide a member function do_serialize() returning void and accepting a single char* argu-
ment. This member function has to extract the current value of the signal whose pointer has been
stored locally. The serialized value is then written into the specified character buffer. How this
serialization is to be done depends completely on your type.
Note: The synchronization library in its revision 1.1.1 allocates the buffer space in 64 bit incre-
ments. So if that helps to speed up your code, you can safely use 64 bit accesses when accessing
the buffer — even when the actual size is smaller.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

18 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

– provide a parameterless member function return_size() returning unsigned int. This function
is only needed when serialized values of your_type objects can have different sizes from time to
time. Accordingly, this function has to determine the current size of the your_type object that
has been stored within this object of the serialize_your_type class. Again, how this size is do
be determined depends solely on your_type.

• A base class for deserializing objects of your_type from a character array (say deserialize your type).
This can also be a template class depending on your needs. This class has to

– contain a (non–static) variable of a pointer to an sc_signal of your_type (here no const because
we are going to change the signal behind).

– provide a constructor with a pointer argument pointing to an sc_signal of your_type. This
constructor does at least store the pointer in the above mentioned variable.

– provide a member function do_deserialize() returning void and accepting a single char* argu-
ment. This member function has to update the value of the signal whose pointer has been stored
locally. The value is to be taken from the specified character buffer. How this deserialization is
to be done depends completely on your type.
Note: In the same way as for serialization, the synchronization library in its revision 1.1.1 allo-
cates the buffer space in 64 bit increments. So if that helps to speed up your code, you can safely
use 64 bit accesses when accessing the buffer — even when the actual size is smaller.

• A template specialization of the class functorize_class for your_type. This can also be a partial
template specialization.
This class has to provide two public member functions functorize_inbound_signal() and
functorize_outbound_signal() that are characterized as following:

functorize_inbound_signal():

– The prototype of the functorize_inbound_signal() function has to look more or less exactly
like:

TFunctor w∗ functorize inbound signal (
sc signal<your type>& signal ,
int& signal type ,
s i ze t& signal type size ,
const char∗& signal type name

);

– signal_type is to be set to DFSYNC_TYPEID_UNKNOWN.

– signal_type_size is to be set to the size of a serialized value of your_type. Note that you
cannot make use of sizeof() here as you are dealing with pointers in your_type. In case the
size of the serialized value of your_type changes from time to time you either have to specify
the largest possible size or (strongly recommended) zero. A size of zero marks dynamically sized
values.

– signal_type_name gets assigned some constant character string. This string can be determining
by making use of typeid(your_type).name(). Another solution would be to assign some text
defined by yourself. The latter one has the advantage that the type name will be not dependent
from the compiler. This can be useful when you need to compile different simulation kernels with
different compilers.

– The TFunctor_w* returned by functorize_inbound_signal() is the pointer to the created func-
tor. How this is done is best explained by example (see section 5.2).

functorize_outbound_signal():

– The prototype of the functorize_inbound_signal() function has to look more or less exactly
like:

TFunctor r∗ functorize outbound signal (
const sc signal<your type>& signal ,
int& signal type ,
s i ze t& signal type size ,
const char∗& signal type name

);

– The remaining things are actually the same as for functorize_inbound_signal() and do not
need to be discussed again.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 19

Additional Notes:

• All code in the header file has to be included in the dfsync name space.

• Sometimes it might be necessary to include additional control information besides the actual signal
value. In general, you have to be able to deserialize the value again in order to reconstruct the value.
The string example given below does this by appending a zero at the end of the string.

That’s all!

This header file has to be included by your application after the header file of the synchronization library
(systemc_sync.h).

Well, although this appears to be quite a lot of work, the following example will show that this is not the
case. Most of the work is just copy–and–paste.

5.2 The std::string Example

As an example for a non–trivial type, there is made available an according header file that is providing
support for the class std::string.

This header file can be used as example for developing according code for the support of other types and is
shortly discussed in this section.

Listings 5.1 and 5.2 show the code of the functorize_string.h header file. Now let’s walk through the
code.

As it should be done for all header files, the whole code is enclosed by the standard preprocessor directives
(lines 18, 19, and 124). Of course, you have rename DFSYNC_FUNCTORIZE_STRING_H for your header file.

It is also important to include the code in the dfsync name space (lines 23 and 122).

The serializing class (serialize_string) is defined in lines 27 to 47. The class constructor just stores the
specified signal pointer in the local pointer variable my_signal. do_serialize() first reads out the signal
value into a temporary object temp_value (might be not really needed). Then the size of the current string
is determined using the length() method. In this case 1 is added because we have to include the zero–
termination. Finally, the string is converted to a NULL–terminated C–string using the c_str() method and
transferred into the given buffer using memcpy() (line 39).

Because string contains strings of arbitrary length, a function for returning the current size of the serialized
value is needed (lines 42 to 45). This function does also return one more than the actual length because we
transmit a NULL–termination together with the string.

The deserialization class (deserialize_string, lines 51 to 65) does not differ very much from the seri-
alization class. Fortunately, std::string provides an assignment operator for NULL–terminated (C–like)
strings. So the new value can be directly written from the specified buffer (line 62).

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

20 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1� �
18 #ifndef DFSYNC FUNCTORIZE STRING H
19 #define DFSYNC FUNCTORIZE STRING H
20
21 #include <string>
22
23 namespace dfsync {
24
25 //
26 // Base class for serialization of std::string
27 class serialize string {
28 protected:
29 const sc signal<std::string>∗ my signal;
30 public:
31 // constructor just stores the signal pointer
32 serialize string(const sc signal<std::string>∗ signal) {
33 my signal = signal;
34 }
35
36 void do serialize(char∗ value) {
37 std::string temp value = my signal−>read();
38 unsigned int length = temp value.length() + 1;
39 memcpy(value, temp value.c str(), length);
40 }
41
42 unsigned int return size() {
43 // return one more because we need the zero−termination as well
44 return (my signal−>read().length() + 1);
45 }
46
47 };
48
49 //
50 // Base class for deserialization of std::string
51 class deserialize string {
52 protected:
53 sc signal<std::string>∗ my signal;
54
55 public:
56 // constructor just stores the signal pointer
57 deserialize string(sc signal<std::string>∗ signal) {
58 my signal = signal;
59 }
60
61 void do deserialize(char∗ new value) {
62 my signal−>write(new value);
63 }
64
65 };� �

Listing 5.1: functorize string.h (Part 1)

Next comes the template specialization of the class functorize_class for the type std::string. This class
provides the two member functions functorize_inbound_signal() and functorize_outbound_signal().
Both functions are almost symmetric. In lines 79/80 and 103/104 the type id is set to DFSYNC_TYPEID_UNKNOWN
and the type size is set to 0. Especially the latter one marks the type as one with flexibly sized values.

The name of the type is set to ”c++ string” (lines 81 and 105). As shown in the listing, an alternative
would be the use of typeid().name().

In line 83/84 resp. 107/108 there are declared temporary pointers. The deserialize_object resp.
serialize_object is a pointer to an object of the according base class for serialization/deserialization.
In line 86 resp. 110 this pointer becomes initialized by creating an according object.

In lines 89–90 resp. 112–115 the actual functors are created. The TSpecificFunctor_w and
TSpecific_Functor_r template classes have to be instantiated for the class deserialize_string resp.
serialize_string. The first argument for the functor instantiation is the pointer of the according
deserialize_object resp. serialize_object that has been created before. The second argument is a
reference to the deserialization/serialization function of the according class.

As for functorizing outbound signals, the constructor of TSpecificFunctor_r supports a third argument
that has to be a reference of the serialize_string member function that is determining the current size of

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 21� �
67 //
68 // functorize class template specialization for the type std::string
69 template <>
70 class functorize class<std::string> {
71 public:
72 TFunctor w∗ functorize inbound signal(
73 sc signal<std::string>& signal,
74 int& signal type,
75 size t& signal type size,
76 const char∗& signal type name
77) {
78
79 signal type = DFSYNC TYPEID UNKNOWN;
80 signal type size = 0; // marks together with DFSYNC TYPEID UNKNOWN flexibly sized values
81 signal type name = ”c++ string”; // alternatively: typeid(std::string).name();
82
83 deserialize string∗ deserialize object;
84 TSpecificFunctor w<deserialize string>∗ write functor;
85
86 deserialize object = new deserialize string(&signal);
87
88 write functor = new TSpecificFunctor w<deserialize string> (
89 deserialize object, &deserialize string::do deserialize
90);
91
92 return write functor;
93
94 }
95
96 TFunctor r∗ functorize outbound signal(
97 const sc signal<std::string>& signal,
98 int& signal type,
99 size t& signal type size,

100 const char∗& signal type name
101) {
102
103 signal type = DFSYNC TYPEID UNKNOWN;
104 signal type size = 0; // marks together with DFSYNC TYPEID UNKNOWN flexibly sized values
105 signal type name = ”c++ string”; // alternatively: typeid(std::string).name();
106
107 serialize string∗ serialize object;
108 TSpecificFunctor r<serialize string>∗ read functor;
109
110 serialize object = new serialize string(&signal);
111
112 read functor = new TSpecificFunctor r<serialize string>(
113 serialize object, &serialize string::do serialize,
114 &serialize string::return size
115);
116
117 return read functor;
118
119 }
120 };
121
122 } // namespace dfsync
123
124 #endif // DFSYNC FUNCTORIZE STRING H� �

Listing 5.2: functorize string.h (Part 2)

the serialized value. As we are dealing with a type of flexible value size here, this function must be specified.
In other cases it can be omitted and NULL is assumed in this case.

Finally, the pointers of the prepared functors are returned and the library can do its work with them.

Note: Keep in mind that in order to use std::string as SystemC signal type one has to provide an
according overloaded sc_trace() function. As it turned out, for SystemC 2.1.v1 this function needs to be
defined within the sc_core name space. This was not necessary for earlier SystemC releases and appears to
be still not required for user–defined types.

The overloading could look like the piece of code shown in listing 5.3.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

22 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1� �
1 namespace sc core {
2
3 void sc trace (sc t race f i l e ∗ tf , const std : : str ing& parameter , const std : : str ing& str) {
4 sc trace (tf , parameter . c str () , str) ;
5 }
6
7 }� �

Listing 5.3: sc trace() overloading for std::string

5.3 Modification of Code for known SystemC Signal Types

Basically, it is possible to modify the code that is provided for handling SystemC types. For instance, it
might be you discovered a bug in the handling of the type sc_fix_fast and you want to serialize according
signal type values as ASCII string instead of double. You can do this by removing the according template
specialization and/or serialization code and replace it according your needs. However, in this particular case
you must not use the original type identifier but DFSYNC_TYPEID_UNKNOWN. The reason for this is that the
synchronization library determines the size of serialized values internally. Only when your new size is smaller
or equal to the size used by the synchronization library you can continue to use the original identifier from
a formal point of view.

The following table shows how the synchronization library determines the number of bytes used for various
signal types. W marks the word length as it is handed over via signal_type_size to the library during
signal attachment.

SystemC Type Serialized Value Size (Bytes) Comment
sc_bit 1 single ASCII char
sc_logic 1 single ASCII char
sc_int<> W ÷ 8; add 1 if W%8 > 0 compact integer format
sc_uint<> W ÷ 8; add 1 if W%8 > 0 compact integer format
sc_bigint<> W ÷ 8; add 1 if W%8 > 0 compact integer format
sc_biguint<> W ÷ 8; add 1 if W%8 > 0 compact integer format
sc_bv<> W ÷ 8; add 1 if W%8 > 0 compact integer
sc_lv<> W + 1 ASCII string with NULL–Termination
sc_fixed<> W ÷ 8; add 1 if W%8 > 0 compact integer format
sc_ufixed<> W ÷ 8; add 1 if W%8 > 0 compact integer format
sc_fixed_fast<> 8 double value
sc_ufixed_fast<> 8 double value
sc_fix W ÷ 8; add 1 if W%8 > 0 compact integer format
sc_ufix W ÷ 8; add 1 if W%8 > 0 compact integer format
sc_fix_fast 8 double value
sc_ufix_fast 8 double value

Although possible as described above, it is not recommended to reuse existing type identifiers for own
serialization/deserialization mechanisms. The advantage of doing so, is that the connection of executables
that have been built with different template codes will fail at the very beginning during the consistency
check. In case the type identifiers remain the same, the consistency check will be passed but the according
deserialization codes do not match the serialization codes. This results in unpredictable and nondeterministic
behavior. Therefore it is recommended to declare the type as unknown and code according type–specific
information as ASCII–text into the type name. As this name can have an arbitrary length, there is plenty
of space for detailed descriptions.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 23

Chapter 6

Example Application

This chapter gives a detailed description of a small example that is provided together with the synchronization
library. This is an evolved version of the example that has been discussed in [7].

In section 3.6 on page 11 there are given instructions how to compile and start the example.

6.1 Basic Model

The purpose of the exemplary model is to realize a simple counter composed of a register and an adder.
Both components are located in separate simulation kernels. Figure 6.1 illustrates the exemplary system
and shows how the signals are connected.

reg_in reg_out
a_in

b_in

sum_out

const_out

Clk

(Init = 0)
Adder

Reg

Const

(Val = 1)

Kernel 2Kernel 1

Figure 6.1: Exemplary Distributed System

Besides the register, kernel 1 does also include a constant that is to be added to the current register value
as well as a clock generator.

Kernel 1 will need one outbound sync module where the signals reg_out and const_out are to be attached
to. Also a single inbound sync module is needed where reg_in is attached to.

Say we want to clock the register with 100Mhz. So the register will change every 10ns. Accordingly, reg_out
will have to be attached with an update cycle of 10ns. A phase shift is not needed.

const_out is a signal with a value that does never change. So actually this needs to be synchronized only
once at the beginning. We cannot specify an infinite update cycle, but at least a rather large one — say

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

24 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

1 second. We could also use a small value. But keep in mind that every synchronization takes some time in
the end...

Kernel 2 has one inbound sync module for the two signals a_in and b_in, and one outbound sync module
for sum_out. sum_out has to be attached with an update cycle of 10ns — this has to match the frequency of
the register clock. If it does not match, the simulation won’t work correctly. In addition, we specify a small
phase shift of 1ns. We will discuss later in section 6.4 why this is needed.

6.2 Code for Kernel 1 (Register)

6.2.1 Main Code of Kernel 1

Listing 6.1 shows the main code of kernel 1.

In line 18 the dfsync name space is selected. This avoids that we have to specify the dfsync:: prefix for
every name related to the synchronization library.

The three signals are declared in line 21. We use sc_int<8> for all signals. The clock signal is created in
line 27 after there has been created an sc_time object representing a time of 10ns. This object will be also
used later when the signal reg_out is attached to the outbound sync module.

In line 30 the primary synchronization library object is instantiated with the name sync_lib.

In line 35 the outbound sync module is instantiated and named outbound_module. It receives the designator
1 and will be connected to host localhost, port 10011 and inbound sync module with designator 1.

In lines 40 and 41 the two outbound signals are attached to outbound_module. reg_out receives a signal
designator of 1 and will be synchronized every clock_cycle (i.e. every 10ns, see 24). const_out receives
signal designator 2 and will be synchronized every second.

In line 44 the inbound sync module is created with an inbound sync module designator 1. Note that this
designator does not conflict with the designator of outbound_module which is 1 as well!

The one and only inbound signal is attached in line 47 with a signal designator 1. This does also not conflict
with the designator 1 of the outbound signal reg_out. Signal designators are solely defined within the
context of individual inbound and outbound sync modules. Even when there would be another inbound
sync module, there could be attached another signal with designator 1.

A register component is instantiated in lines 50 – 53. The code of this register is discussed below.

In line 56 const_out is initialized with 1.

The last important call regarding the synchronization library is done in line 59. There, the connection of all
modules is forced by calling the member function connect_all() of the library object. The argument 10010
tells the library to set up a server on TCP port 10010 where the other simulation kernel has to connect to.

Finally, the simulation is started for some time.

6.2.2 Code for the Register Component (Alternative I)

One alternative for the actual register code is shown in listing 6.2. For convenience, the actual implementation
code has been directly included in the module prototype declaration.

Note: Normally one would separate prototype declaration and implementation and place the implementation
into a separate C++ file. However, in this case a small exception is made in order to reduce the amount of
involved files so that the focus can be set on the essential things to be demonstrated by this example.

Actually, there is nothing special with the register code as it is mostly following the coding standard for
synthesizable D–FlipFlops as stated in [6] (in particular, refer to page 4-4). Though, our register writes out
some messages telling us what it is doing. In addition, there is implemented a power–on reset setting the
register content to zero initially. This is done by checking whether the simulation time is zero (line 18). Of
course, this is not synthesizable. But one could also check the state of a reset signal there. However, this
reset signal would need an additional reset–circuitry. For the sake of an as simple as possible example design
this has been omitted.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 25� �
11 #include ”systemc.h”
12 #include ”systemc sync.h”
13 #include ”clocked reg.h”
14
15 int sc main(int ac, char ∗av[])
16 {
17 // use dsync namespace (avoids dfsync:: prefix)
18 using namespace dfsync;
19
20 // some declarations
21 sc signal< sc uint<8> > reg in, reg out, const out;
22
23 // our clock cycle (10ns for 100MHz)
24 sc time clock cycle(10.0, SC NS);
25
26 // create a clock (50% duty cycle, cycle according clock cycle)
27 sc clock clk(”clk”, clock cycle, 0.5, clock cycle);
28
29 // create synchronization library object
30 sc dfsync sync lib;
31
32 // create an outbound sync module with designator 1
33 // (will be connected later to inbound sync module 1 located on
34 // simulation kernel running on localhost port 10011)
35 sc dfsync out outbound module = sync lib.outbound module(1, ”localhost”, 10011, 1);
36
37 // attach our two outbound signals and specify update cycles
38 // (the cycle for const out can be basically infinite for this example)
39 // A phase shift is not needed for both signals.
40 outbound module.attach(1, reg out, clock cycle);
41 outbound module.attach(2, const out, 1.0, SC SEC);
42
43 // create inbound sync module (designator 1)
44 sc dfsync in inbound module = sync lib.inbound module(1);
45
46 // attach the one and only inbound signal
47 inbound module.attach(1, reg in);
48
49 // instantiate and connect register component
50 reg REG(”reg”);
51 REG.clock(clk);
52 REG.reg in(reg in);
53 REG.reg out(reg out);
54
55 // initialize the constant
56 const out.write(1);
57
58 // connect all modules and listen on port 10010
59 sync lib.connect all(10010);
60
61 // start the simulation
62 sc start(10000,SC NS);
63
64 return 0;
65 }� �

Listing 6.1: register.cpp

6.2.3 Code for the Register Component (Alternative II)

If we are interested in a more behavioral model, we might want to use a slightly different register description
as shown in listing 6.3.

This model realizes exactly the same functionality as the code shown in listing 6.2. The difference is that
the register is realized as SC_THREAD now rather than SC_METHOD.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

26 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1� �
11 SC MODULE(reg) {
12 sc in< sc uint<8> > reg in;
13 sc out< sc uint<8> > reg out;
14 sc in clk clock;
15
16 void process() {
17
18 // A power−on reset (not synthesizable!)
19 if (sc simulation time() == 0.0) {
20 cout << ”Time: 0ns”
21 << ” => Resetting Register to 0” << endl;
22 reg out.write(0);
23 } else {
24 cout << ”Time: ” << sc simulation time() << ”ns”
25 << ” => Loading Register with ”
26 << reg in.read() << endl;
27
28 // Update the register content.
29 reg out.write(reg in.read());
30
31 }
32 }
33
34 SC CTOR(reg) {
35 SC METHOD(process);
36 sensitive pos << clock;
37 }
38 };� �

Listing 6.2: clocked reg method.h

� �
11 SC MODULE(reg) {
12 sc in< sc uint<8> > reg in;
13 sc out< sc uint<8> > reg out;
14 sc in clk clock;
15
16 void process() {
17
18 // Initialize the Register.
19 cout << ”Time: 0ns”
20 << ” => Resetting Register to 0” << endl;
21 reg out.write(0);
22
23 while (1) {
24 // Wait for our clock.
25 wait();
26
27 cout << ”Time: ” << sc simulation time() << ”ns”
28 << ” => Loading Register with ”
29 << reg in.read() << endl;
30
31 // Update the register content.
32 reg out.write(reg in.read());
33 }
34 }
35
36 SC CTOR(reg) {
37 SC THREAD(process);
38 sensitive pos << clock;
39 }
40 };� �

Listing 6.3: clocked reg thread.h

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 27

6.3 Code for Kernel 2 (Adder)

6.3.1 Main Code of Kernel 2

Listing 6.4 shows the main code of kernel 2.

� �
11
12 #include ”systemc.h”
13 #include ”systemc sync.h”
14 #include ”adder module.h”
15
16 int sc main(int ac, char ∗av[])
17 {
18 // use dsync namespace (avoids dfsync:: prefix)
19 using namespace dfsync;
20
21 // some declarations
22 sc signal< sc uint<8> > a in, b in, sum out;
23
24 // create synchronization library object
25 sc dfsync sync lib;
26
27 // create an outbound sync module with designator 1
28 // (will be connected later to inbound sync module 1 located on
29 // simulation kernel running on localhost port 10010)
30 sc dfsync out outbound module = sync lib.outbound module(1, ”localhost”, 10010, 1);
31
32 // attach sum out which will by synced out every 10ns with a phase shift of 1ns
33 outbound module.attach(1, sum out, 10, SC NS, 1, SC NS);
34
35 // create an inbound sync module with designator 1
36 sc dfsync in inbound module = sync lib.inbound module(1);
37
38 // attach inbound signals
39 inbound module.attach(1, a in);
40 inbound module.attach(2, b in);
41
42 // instantiate and connect the adder component
43 adder ADD(”adder”);
44 ADD.a(a in);
45 ADD.b(b in);
46 ADD.sum(sum out);
47
48 // connect all modules and listen on port 10011
49 sync lib.connect all(10011);
50
51 // start the simulation
52 sc start(10000,SC NS);
53
54 return 0;
55 }� �

Listing 6.4: adder.cpp

Actually, there is not much to describe as this is comparable with the code for kernel 1.

In line 30 an outbound sync module is created an will be later connected to TCP port 10010 on host
localost and inbound sync module 1. Note that the port number matches this one that has been specified
in the connect_all() call of kernel 1 (listing 6.1, line 59).

There is only one outbound signal which is attached in line 33 and receives a designator 1. This designator
is the same as the designator of the inbound signal reg_in that has been attached by kernel 1. Hence, both
signals will be tied together. sum_out will be synchronized every 10ns with a small phase shift of 1ns (see
later). Note that the update cycle cannot be derived from the actual clock rate that is defined by kernel
1. As a result, when the register clock changes, the update cycle of the adder output has to be changed
accordingly.

The inbound sync module is created in line 36 and the two inbound signals are attached to it in lines 39 and
40. So a_in will be connected with reg_out of kernel 1 while b_in will be connected to const_out.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

28 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

In lines 43 – 46 the actual adder component is instantiated and the connection of the synchronization modules
is initiated in line 49. The given port number does again match this one that has been specified for the
outbound sync module instantiation in kernel 1 (listing 6.1, line 35).

The simulation is started in line 52 and should last for the same time as the other kernel. In case one
terminates earlier, the other kernel will become terminated automatically by the synchronization library.

6.3.2 Code for the Adder Component

Listing 6.5 shows the code of the actual adder.� �
9 SC MODULE(adder) {

10 sc in< sc uint<8> > a;
11 sc in< sc uint<8> > b;
12 sc out< sc uint<8> > sum;
13
14 void process() {
15 sum.write(a.read() + b.read());
16 }
17
18 SC CTOR(adder) {
19 SC METHOD(process);
20 sensitive << a << b;
21 }
22 };� �

Listing 6.5: adder module.h

This code is as simple as one can imagine. It is a simple SC_METHOD that is triggered each time there is made
a change on one of the inputs a or b.

6.4 A closer Look on the Timing

Figure 6.2 illustrates the behavior of all involved signals over the time.

ns0

reg_out

reg_in

const

b_in

a_in

sum_out

10 201 2 3 4 5 6 7 8 9 17 18 1911 12 13 14 15 16

1

1

X

X

X

X

2

2

31

0

0

1

1

1

2

2

Figure 6.2: Timing of the Exemplary Distributed System

The figure shows how the values are propagated through the system. This is also illustrated by colors. The
vertical dotted lines and grey bars at 0, 1, 10, etc. nano seconds mark the times when inbound and/or
outbound synchronization takes place. Although the bars are graphically stretched along the time axis, they
are dedicated to the according instant simulation time. This is intended for demonstrating the delta cycle
behavior. This means when an outbound signal is to be synchronized, there will be sent out this value that
is graphically above the dotted line. In contrast, an inbound signal will always change after the dotted line.

In particular, we can observe that reg_out (our actual register content) changes at rather early delta cycles.
In comparison, reg_in, which is an inbound signal, changes rather late. The same is true in case of a_in. It
can also be seen that the value of a_in is immediately following the value of reg_out. There is just a delay
of a few delta cycles.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 29

Well, one might assume the same behavior in case of sum_out and reg_in, which have both the same
outbound/inbound signal relation as reg_out and a_in. However, things are a little bit different here.
Remember that the adder component used in this example is triggered by the change of either a_in or b_in.
When a_in changes as consequence of the inbound synchronization, the outbound synchronization has been
already completed. Hence, the new value of sum_out won’t be anymore synced out at that time but the
next time by. As a result, the new value would be not available at reg_in right before the next clock tick
is coming.

In order to cope with that situation, we have specified a phase shift for the signal sum_out (1ns in particular).
That is, the outbound synchronization of sum_out (which depends directly from the inbound signal a_in) is
delayed by 1ns. Because of this delay, the right value of sum_out becomes synchronized out before the next
clock.

In the example that has been discussed in [7] this situation has been handled by setting the update cycle
of sum_out to half the clock cycle. While this would still work fine here, the phase shift is more elegant.
Another advantage is that sum_out does not need to become synchronized twice as often as actually needed
from a general design point of view. This is important in view of performance considerations.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

30 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 31

Chapter 7

Header Files provided for the
Synchronization Library

7.1 Header File Hierarchy

The following list shows the header file hierarchy and illustrates header file dependencies.

systemc sync.h
type identification.h
parameter definition.h
functor classes.h
functorize baseclass.h
sc dfsync in.h
sc dfsync out.h
sc dfsync.h
functorize flat.h

serialize flat.h
functorize sc u int.h

serialize int.h
functorize sc big u int.h

serialize int.h
functorize sc bit.h

serialize char.h
functorize sc bv.h

serialize int.h
functorize sc logic.h

serialize char.h
functorize sc lv.h

serialize sc lv.h
functorize sc u fixed.h (only included when SC_INCLUDE_FX defined)

serialize int.h
functorize sc u fixed fast.h (only included when SC_INCLUDE_FX defined)

serialize sc u fixed fast.h
functorize sc u fix.h (only included when SC_INCLUDE_FX defined)

serialize sc u fix.h
functorize sc u fix fast.h (only included when SC_INCLUDE_FX defined)

serialize sc u fix fast.h
functorize string.h

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

32 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

7.2 Header File Descriptions

The following subsections list all header files that are provided for the synchronization library in the include
directory. Also there is given a brief description what they do contain. Note that an application has to include
only the top–level header file (systemc_sync.h).

There is also given a short notice whether it is permissible to change parts of the header file. But note that it
is actually not needed to change anything inside any header file. Nevertheless there might be some occasions
where a change appears to be suitable. When changing/replacing code for known SystemC types, do not
use the predefined type identifiers! Use DFSYNC_TYPEID_UNKNOWN unless the serialized value size remains
unchanged. For details refer also to section 5.3 on page 22.

ATTENTION: Be aware of the fact that most changes mean that applications compiled with changed
library headers cannot be interfaced with applications that are compiled with the original library headers.
Apart from that, you can easily hurt the overall library functionality. So be very careful when applying
changes!!!

7.2.1 systemc sync.h

This is the top–level header file that has to be included by the application code. systemc_sync.h itself does
only merge several other headers.

7.2.2 type identification.h

This header contains some defines for different types as well as a function that is used to determine type
identifiers for intrinsic C types.

If needed for whatever reason, you can add more type identifiers and expand the determine_signal_type()
template function. Do not change any existing type identifiers!

7.2.3 parameter definition.h

There are defined all parameter identifiers that have to be used when some default settings need to be
changed using set_parameter().

Do not change these parameter identifiers!

7.2.4 functor classes.h

This header file provides the functor classes needed for signal type anonymization.

Do not change these class definitions!

7.2.5 functorize baseclass.h

This header file contains the prototype definition of the template class used for “functorizing” signals that
are attached to the synchronization library.

Basically, it is possible to change this prototype definition. However, this requires at the same time to adapt
various other header files that make use of this class or provide template specializations.

7.2.6 sc dfsync in.h

sc_dfsync_in.h contains the prototype definition for the class of inbound sync modules.

If needed, the template member function attach() can be changed without hurting the actual library.

7.2.7 sc dfsync out.h

sc_dfsync_out.h contains the prototype definition for the class of outbound sync modules.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 33

If needed, the template member functions attach() can be changed without hurting the actual library.

7.2.8 sc dfsync.h

sc_dfsync.h contains the prototype definition for the primary library class.

There is nothing that can be changed!

7.2.9 functorize flat.h

This header file provides the default implementations for the functorize_class. This header file is needed
for the handling of signals with intrinsic types as well as flat (i.e. pointerless) user–defined types.

These templates can be changed, if needed.

7.2.10 functorize sc u int.h

This header file provides partial template specializations of functorize_class for the SystemC types
sc_int<> and sc_uint<>.

These template specializations can be changed, if needed.

7.2.11 functorize sc big u int.h

This header file provides partial template specializations of functorize_class for the SystemC types
sc_big_int<> and sc_big_uint<>.

These template specializations can be changed, if needed.

7.2.12 functorize sc bit.h

This header file provides a template specialization of functorize_class for the SystemC type sc_bit.

This template specialization can be changed, if needed.

7.2.13 functorize sc bv.h

This header file provides a partial template specialization of functorize_class for the SystemC type
sc_bv<>.

This template specialization can be changed, if needed.

7.2.14 functorize sc logic.h

This header file provides a template specialization of functorize_class for the SystemC type sc_logic.

This template specialization can be changed, if needed.

7.2.15 functorize sc lv.h

This header file provides a partial template specialization of functorize_class for the SystemC type
sc_lv<>.

This template specialization can be changed, if needed.

7.2.16 functorize sc u fixed.h

This header file provides partial template specializations of functorize_class for the SystemC types
sc_fixed<> and sc_ufixed<>. According SystemC behavior, this file is only included when
SC_INCLUDE_FX has been defined by the application or is specified as compiler option (-DSC_INCLUDE_FX).

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

34 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

These template specializations can be changed, if needed.

7.2.17 functorize sc u fixed fast.h

This header file provides partial template specializations of functorize_class for the SystemC types
sc_fixed_fast<> and sc_ufixed_fast<>. According SystemC behavior, this file is only included when
SC_INCLUDE_FX has been defined by the application or is specified as compiler option (-DSC_INCLUDE_FX).

These template specializations can be changed, if needed.

7.2.18 functorize sc u fix.h

This header file provides template specializations of functorize_class for the SystemC types sc_fix and
sc_ufix. According SystemC behavior, this file is only included when SC_INCLUDE_FX has been defined by
the application or is specified as compiler option (-DSC_INCLUDE_FX).

These template specializations can be changed, if needed.

7.2.19 functorize sc u fix fast.h

This header file provides template specializations of functorize_class for the SystemC types sc_fix_fast
and sc_ufix_fast. According SystemC behavior, this file is only included when SC_INCLUDE_FX has been
defined by the application or is specified as compiler option (-DSC_INCLUDE_FX).

These template specializations can be changed, if needed.

7.2.20 functorize string.h

This header file provides a template specialization of functorize_class for the C++ class std::string.
At the same time, it provides serialization/deserialization classes that are unique for std::string.

This code is discussed in more detail in this document (see section 5.2, page 19).

These templates can be changed, if needed.

7.2.21 serialize flat.h

This header file provides serialization/deserialization classes for intrinsic and flat (i.e. pointerless) user–
defined types. It is only needed by functorize_flat.h.

These templates can be changed, if needed.

7.2.22 serialize char.h

This header file provides serialization/deserialization classes for SystemC types that are serialized by making
use of the to_char() method. This is the case for sc_bit and sc_logic. Correspondingly, this header file
is needed by functorize_sc_bit.h and functorize_sc_logic.h.

These templates can be changed, if needed.

7.2.23 serialize int.h

This header file provides serialization/deserialization classes for SystemC types that are serialized by mak-
ing use of the to_uint() method. This is the case for sc_int<>, sc_uint<>, sc_bigint<>, sc_biguint<>,
sc_bv<>, sc_fixed<>, and sc_ufixed<>. Correspondingly, this header file is needed by the following head-
ers:
functorize_sc_u_int.h
functorize_sc_big_u_int.h
functorize_sc_bv.h
functorize_sc_u_fixed.h

These templates can be changed, if needed.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 35

7.2.24 serialize sc lv.h

This header file provides serialization/deserialization classes for the SystemC type sc_lv<>. It is only needed
by functorize_sc_lv.h.

These template classes can be changed, if needed.

7.2.25 serialize sc u fixed fast.h

This header file provides serialization/deserialization classes for the SystemC types sc_fixed_fast<> and
sc_ufixed_fast<>. It is only needed by functorize_sc_u_fixed_fast.h.

These template classes can be changed, if needed.

7.2.26 serialize sc u fix.h

This header file provides serialization/deserialization classes for the SystemC types sc_fix and sc_ufix. It
is only needed by functorize_sc_u_fix.h.

These template classes can be changed, if needed.

7.2.27 serialize sc u fix fast.h

This header file provides serialization/deserialization classes for the SystemC types sc_fix_fast and
sc_ufix_fast. It is only needed by functorize_sc_u_fix_fast.h.

These template classes can be changed, if needed.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

36 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 37

Chapter 8

Library Function Reference

8.1 Library State Diagram

Figure 8.1 shows different states of the library and transitions between those states. These states are not
directly visible externally.

sc_dfsync() connect_all()

inbound_module()
outbound_module()
attach()

Idle Working
Calls

Accepting

set_parameter()

Figure 8.1: Relation between Library Calls and Library States

The function attach() shown there refers to member functions of both outbound and inbound sync module
classes (sc_dfsync_in::attach() as well as sc_dfsync_out::attach()). Similarly, set_parameter()
refers to sc_dfsync::set_parameter() as well as sc_dfsync_out::set_parameter().

When a primary library object is being created by calling the constructor sc_dfsync() the library enters
the Accepting Calls state. When in this state, the library accepts all calls that are needed for configuring
the setup.

When connect_all() is called, the library goes from the Accepting Calls into the Working state. In this state
there are no further library calls accepted anymore. When called anyways, the functions for creating new
inbound or outbound sync modules report an error message and the application terminates. The functions
for connecting the modules and changing parameters just report a warning and return an error status, but
do not perform any action.

The individual classes and according member functions are described in the following sections.

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

38 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

8.2 class sc dfsync

This class represents the basic synchronization library. There can be instantiated only one instance of this
class.

8.2.1 Constructor sc dfsync()

This simple constructor is to be used for creating an instance of the synchronization library. As noted above,
there can be created only one library object. The application becomes terminated when the sc_dfsync()
contructor is called repeatedly.

Example

sc dfsync sync l ib ;

creates an object called sync_lib that represents the library.

8.2.2 Destructor ~sc dfsync()

This is the destructor for the library and is normally not explicitly used by the application.

8.2.3 sc dfsync in inbound module()

This member function has to be called in order to create a new inbound synchronization module. It returns
an object from the class sc_dfsync_in which is used for later interactions with that particular module.

Full Synopsis

sc dfsync in inbound module(
const unsigned int designator

) ;

There is only one argument that specifies the designator of this particular inbound sync module.

Argument Restrictions/Errors

The specified designator needs to be larger than 0 and needs to be unique within the local SystemC simulation
kernel. That is, there must be no other inbound sync module created before that is carrying the same
designator.

Creating new inbound sync modules is not allowed after the modules have been connected.

When an error occurred, there is written out an appropriate error message and the whole application is
being terminated. The reasons for an error can be an inbound sync module designator 0, a designator that
is already in use, or the attempt to create a new inbound sync module after connection.

Example

sc dfsync in inbound module1 = sync l ib . inbound module(1);

creates a new inbound sync module called inbound_module1 with designator 1.

8.2.4 sc dfsync out outbound module()

This member function has to be called in order to create a new outbound synchronization module. It returns
an object from the class sc_dfsync_out which is used for later interactions with that particular module.

Full Synopsis

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 39

sc dfsync out outbound module(
const unsigned int designator ,
const char∗ remote hostname , const int remote port ,
const unsigned int remote designator

) ;

The designator specifies the designator of this particular outbound sync module.

The pair remote_hostname and remote_port specifies the hostname and the port number (TCP/IP) of the
remote simulation kernel where this outbound sync module shall connect to.

Finally, remote_designator specifies the designator of the according remote inbound sync module at the
simulation kernel that has been specified by hostname/port.

Argument Restrictions/Errors

The specified module designator needs to be larger than 0 and needs to be unique within the local SystemC
simulation kernel. That is, there must be no other outbound sync module created before that is carrying
the same designator.

As hostname either the IP address of the remote machine or a qualified name can be specified.

Creating new outbound sync modules is not allowed after the modules have been connected.

When an error occurred, there is written out an appropriate error message and the whole application is
being terminated. The only reason for an error can be an outbound sync module designator 0, a designator
that is already in use, or the attempt to create a new outbound sync module after connection.

Example

sc dfsync out outbound module1 = sync l ib .outbound module(1 , ”localhost” , 10010 , 1);

creates a new outbound sync module called outbound_module1 with designator 1. Later, it will be attempted
to connect this module with a remote inbound sync module designated with 1 which is located in the
simulation kernel running on host localhost and listens on TCP/IP port 10010.

8.2.5 int set parameter()

By using this member function it is possible to manipulate some parameters relevant for the synchronization
library as a whole (i.e. not specific to individual inbound or outbound sync modules).

Full Synopsis

int set parameter(
const unsigned int parameter ,
const unsigned int value

) ;

Currently, there are only parameters of type unsigned int. parameter specifies a parameter identifier and
value the new parameter value. For a description of individual parameters refer to section 8.3 (page 40).

set_parameter() returns 0 normally, or 1 when some problem occurred.

Argument Restrictions/Errors

The specified parameter needs to be a valid one, of course. Also, there might apply some restrictions for the
value of certain parameters (refer to section 8.3). In addition, some or all parameters might only be changed
before the synchronization library has been connected with remote simulation kernel(s).

When some violation has been detected, a warning is written out and a 1 is returned. No parameter will
have changed in this case.

Example

sync l ib . set parameter (Param Relax Delta Cycles , 10) ;

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

40 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

sets the parameter Param_Relax_Delta_Cycles to the value 10. For convenience, there exist constant
declarations for all parameters in order to give them human–readable synonyms.

8.2.6 int connect all()

This member function is used to connect all created inbound and outbound sync modules with their remote
counterparts according the information that has been specified during module creation. The function is
blocking until all local inbound and outbound sync modules have been successfully connected.

After establishing the raw connection, there is carried out a signal consistency check in order to ensure that
only signals of the same type are connected together. Possibly missing signals are reported as well and result
in an error. Additionally, it is being checked whether an inbound sync module is able to handle the time
resolution of the signals. This is required as it might be that an outbound signal changes at a resolution
that is higher than the resolution of the inbound sync module resp. its simulation kernel.

Full Synopsis

int connect all (
const int portnum

);

The portnum argument specifies the TCP/IP port number that is used for setting up a server socket. Remote
outbound sync modules that want to connect to one of the local inbound sync modules have to use this port
number.

When there has been created no inbound sync module, the value of the portnum argument does not matter.

The return value of this function is normally 0. In case the library was already connected (i.e. is in working
state), a warning is written out and a 1 is returned.

Argument Restrictions/Errors

The port number can be any valid number that is not already in use. All errors that appear during connection
are considered fatal and result in a termination of the whole application. There are basically two kinds of
error conditions: Connection–related errors (i.e. the port number is already in use) and consistency errors
such as non–existing inbound sync modules, inconsistent signals on both sides, etc.

These errors are all reported in detail.

Example

sync l ib . connect all (10010);

If there has been instantiated at least one inbound sync module, a TCP/IP socket server is set up to listen
at port 10010 and is waiting for remote outbound sync modules to connect. In parallel, all instantiated
outbound sync modules are connected to remote inbound sync modules according the parameters specified
during outbound sync module creation.

Important Note: connect_all() internally performs several calculations based on timing–related pa-
rameters. In particular, this involves the simulation resolution and the default time unit. Therefore it is
forbidden to change either parameter by sc_set_time_resolution() or sc_set_default_time_unit() af-
ter connect_all() has been called. Well, according the SystemC 2.0.1 Language Reference Manual ([2],
page 416) it is not possible to adjust both parameters after an sc_time object has been created. While this
is working well for the simulation resolution and the application terminates in case of an error, this is not the
case for the default time unit. Tests have shown that the default time unit can be changed anywhere during
the elaboration phase, and in particular also after the creation of the first sc_time object. Therefore care
should be taken here because changing the default time unit after connection causes unpredictable results.

8.3 Parameters for class sc dfsync

The following parameters for the synchronization library as a whole are currently defined. All parameter
identifiers are of type unsigned int. However, there exist clear–name constants that should be used always.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 41

8.3.1 Param Relax Delta Cycles (3)

Value Type

unsigned int

Default Value

2

Purpose

This parameter defines the number of delta cycles that are let pass at the beginning of each delta cycle. This
number should (must) be at least one more than the largest number of trigger indirections of any outbound
signal.

As an example, when all outbound signals are triggered by a clock signal created with sc_clock there is one
trigger indirection and the Param Relax Delta Cycles parameter has to be set to 2 (this is also the default
value). When the clock signal is additionally gated before it is feed to the registers, the trigger indirection
level is two and the parameter has to be set to 3.

Note: Although it has only limited use, the library allows to set Param Relax Delta Cycles to zero. This
means that the signal values that are synced out have not been changed by the according threads or methods
in the same simulation time. Effectively, this causes a phase shift of 360◦. I.e. assuming a register changed
in cycle N , this change is visible on the remote simulation kernel in cycle N + 1.

Note: In general, the use of the feature for changing the number of relaxation delta cylces is not rec-
ommended as it is prone for error. If possible, make use of the phase shift for outbound synchronization
instead.

8.4 class sc dfsync in

This is the class of inbound sync modules. The class constructor is not a public function and cannot be
called by the application.

8.4.1 int attach()

attach() is used for attaching a signal to the inbound sync module. attach() returns always 0.

Full Synopsis

template <typename T>
int attach(
const unsigned int designator , sc signal<T>& signal

) {}

Argument Restrictions/Errors

The designator needs to be larger than 0 and, of course, must not be already used for another signal attached
to the same inbound sync module. Additionally, attach() must not be called after the modules have been
connected.

In case there is any error detected, an error message is printed and the application becomes terminated.

The signal argument can be of any kind of SystemC signal type including user user defined types.

Note: Note that in case of complex, abstract signal types or classes there have to be provided according
handling templates.

Example

inbound module1 . attach (1 , signal1) ;

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

42 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

attaches the signal signal1 with designator 1 to inbound sync module inbound_module1.

8.5 class sc dfsync out

This is the class of outbound sync modules. Similarly as for class sc_dfsync_in, the class constructor is
not a public function and cannot be called by the application.

8.5.1 int attach()

attach() is used for attaching a signal to the outbound sync module. attach() returns always 0.

Full Synopsis

template <typename T>
int attach(

const unsigned int designator , const sc signal<T>& signal ,
const sc time cycle , const sc time phase shift

) {}

template <typename T>
int attach(

const unsigned int designator , const sc signal<T>& signal ,
const double cycle value , const sc time unit cycle time unit ,
const double phase shift value , const sc time unit phase shift time unit

) {}

template <typename T>
int attach(

const unsigned int designator , const sc signal<T>& signal ,
const double cycle value , const sc time unit cycle time unit

) {}

template <typename T>
int attach(

const unsigned int designator , const sc signal<T>& signal ,
const sc time cycle ,
const double phase shift value , const sc time unit phase shift time unit

) {}

template <typename T>
int attach(

const unsigned int designator , const sc signal<T>& signal ,
const sc time cycle

) {}

template <typename T>
int attach(

const unsigned int designator , const sc signal<T>& signal ,
const double cycle value , const sc time unit cycle time unit ,
sc time phase shift

) {}

template <typename T>
int attach(

const unsigned int designator , const sc signal<T>& signal ,
const double cycle value , const sc time unit cycle time unit

) {}

There are various kinds of attach() differing in the way the update cycle and the phase shift is specified.
Generally, the phase shift can be omitted and 0 is assumed in this case.

Argument Restrictions/Errors

The designator needs to be larger than 0 and, of course, must not be already used for another signal
attached to the same outbound sync module. The specified update cycle has to be always greater than zero.
Additionally, attach() must not be called after the modules have been connected.

In case there is any error detected, an error message is printed and the application becomes terminated.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 43

The signal argument can be of any kind of SystemC signal type including user user defined types. The
update cycle can be specified either by handing over a predefined sc_time variable, or by specifying a
value/time unit tuple (whatever appears to be more applicable). The same is true for the phase shift which
can also be omitted.

Example

sc time update cycle (100.0 , SC NS);

outbound module1 . attach (1 , signal1 , update cycle) ;
outbound module1 . attach (2 , signal2 , 100.0 , SC NS);

attaches two signals to outbound sync module outbound_module1 that are synchronized every 100 nano
seconds and have no phase shift.

8.5.2 int set parameter()

The class sc_dfsync_out has a public member function that allows the setting of a few parameters which
are related to individual instances of outbound sync modules.

Full Synopsis

int set parameter(
const unsigned int parameter ,
const unsigned int value

) ;

Currently, there are only parameters of type unsigned int. parameter specifies a parameter identifier and
value the new parameter value. For a description of individual parameters refer to section 8.6 (page 43).

set_parameter() returns 0 normally, or 1 when some problem occurred.

Argument Restrictions/Errors

The specified parameter needs to be a valid one, of course. Also, there might apply some restrictions for the
value of certain parameters (refer to section 8.6). In addition, some or all parameters might only be changed
before the synchronization library has been connected with remote simulation kernel(s).

When some violation has been detected, a warning is written out and a 1 is returned. No parameter will
have changed in this case.

Example

outbound module . set parameter (Param Flow Ctrl Max Cycles , 100);

sets the parameter Param_Flow_Ctrl_Max_Cycles to a value of 100.

8.6 Parameters for class sc dfsync out

The following parameters for individual outbound sync modules are currently defined. All parameter iden-
tifiers are of type unsigned int. However, there exist clear–name constants that should be used always.

8.6.1 Param Flow Ctrl Max Cycles (1)

Value Type

unsigned int

Default Value

10

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org

44 User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1

Purpose

This parameter affects the flow control mechanism and limits the amount of synchronization cycles that the
outbound sync module can be ahead of the corresponding remote inbound sync module. This parameter is
useful for avoiding a too fast progression of simulation kernels compared to others and is mostly only relevant
for open–loop simulations.

8.6.2 Param Send Buffer Size (2)

Value Type

unsigned int

Default Value

4096

Purpose

This parameter sets the buffer size (in bytes) that is used to optimize the data transfer from the outbound
sync module to the remote inbound sync module.

Note: Large values do not necessarily mean better performance. The send buffer takes up signal notifications
as long as it does not overflow or it becomes flushed. When we assume a very large buffer and a similarly
large amount of outbound signals, it will take some time to fill the buffer. In the mean time, the remote
inbound sync module has nothing to do. When the buffer size is decreased, the operation of the inbound
and outbound sync module can be overlapped yielding in an increased overall throughput.

12th December 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

User Manual for Distributed SystemCTM Synchronization Library Rev. 1.1.1 45

Recommended Readings

[1] Stuart Swan: An Introduction to System Level Modeling in SystemC 2.0.
Cadence Design Systems, Inc. May 2001, Open SystemC Initiative (OSCI)

[2] SystemC 2.0.1 Language Reference Manual.
Revision 1.0, 2003, Open SystemC Initiative (OSCI)

[3] Draft Standard SystemC Language Reference Manual. (aka SystemC 2.1 LRM)
April 25 2005, Open SystemC Initiative (OSCI)

[4] FUNCTIONAL SPECIFICATION FOR SYSTEMC 2.0 (Update for SystemC 2.0.1).
Version 2.0-Q April 5, 2002, SystemC Language Working Group

[5] SystemCTM Version 2.0 User’s Guide.
Update for SystemC 2.0.1, 2002

[6] Describing Synthesizable RTL in SystemCTM.
Version 1.2, November 2002, Synopsys, Inc.

[7] Mario Trams: Conservative Distributed Discrete Event Simulation with SystemC using Explicit Looka-
head.
Digital Force White Paper, February 2004. Available from
http://www.digital-force.net/publications

[8] Mario Trams: A First Mature Revision of a Synchronization Library for Distributed RTL Simulation
in SystemCTM.
Digital Force White Paper, November 2004. Available from
http://www.digital-force.net/publications

[9] Mario Trams: Benchmarking the Distributed SystemCTM Synchronization Library Rev. 1.1.0.
Digital Force White Paper, February 2005. Available from
http://www.digital-force.net/publications

F O R C E
D i g i t a l 12th December 2005

c© Digital Force / Mario Trams

http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://www.digital-force.net/publications
http://www.systemc.org
http://www.digital-force.net/publications
http://www.systemc.org
http://www.digital-force.net/publications

	Preface
	Why does this Library exist?
	Why is this Library made publicly available?
	What will be the Future of the Library?
	This Release 1.1.1

	Legal Matters
	Terms of Use / License Agreement
	NO WARRANTY
	The LIBRARY and the GNU Portable Thread Library

	Library Installation and Usage
	Requirements
	Installation
	Compiler Version
	The GNU Portable Thread Library
	Application Compilation and Linking
	Example Compilation
	Other Documentation

	Things to take Care for
	Do not exceed the maximal Simulation Time!
	Do not change Simulation Resolution after Connection!
	Be aware of Time--Rounding!
	Selecting the right Buffer Sizes

	Preparing the Synchronization Library for your own Signal Types
	What is needed in Detail?
	The std::string Example
	Modification of Code for known SystemC Signal Types

	Example Application
	Basic Model
	Code for Kernel 1 (Register)
	Main Code of Kernel 1
	Code for the Register Component (Alternative I)
	Code for the Register Component (Alternative II)

	Code for Kernel 2 (Adder)
	Main Code of Kernel 2
	Code for the Adder Component

	A closer Look on the Timing

	Header Files provided for the Synchronization Library
	Header File Hierarchy
	Header File Descriptions
	systemc_sync.h
	type_identification.h
	parameter_definition.h
	functor_classes.h
	functorize_baseclass.h
	sc_dfsync_in.h
	sc_dfsync_out.h
	sc_dfsync.h
	functorize_flat.h
	functorize_sc_u_int.h
	functorize_sc_big_u_int.h
	functorize_sc_bit.h
	functorize_sc_bv.h
	functorize_sc_logic.h
	functorize_sc_lv.h
	functorize_sc_u_fixed.h
	functorize_sc_u_fixed_fast.h
	functorize_sc_u_fix.h
	functorize_sc_u_fix_fast.h
	functorize_string.h
	serialize_flat.h
	serialize_char.h
	serialize_int.h
	serialize_sc_lv.h
	serialize_sc_u_fixed_fast.h
	serialize_sc_u_fix.h
	serialize_sc_u_fix_fast.h

	Library Function Reference
	Library State Diagram
	class sc_dfsync
	Constructor sc_dfsync()
	Destructor ˜sc_dfsync()
	sc_dfsync_in inbound_module()
	sc_dfsync_out outbound_module()
	int set_parameter()
	int connect_all()

	Parameters for class sc_dfsync
	Param_Relax_Delta_Cycles (3)

	class sc_dfsync_in
	int attach()

	class sc_dfsync_out
	int attach()
	int set_parameter()

	Parameters for class sc_dfsync_out
	Param_Flow_Ctrl_Max_Cycles (1)
	Param_Send_Buffer_Size (2)

	Recommended Readings

